HYERS-ULAM STABILITY OF FIRST ORDER LINEAR DIFFERENCE OPERATORS ON BANACH SPACE
HYERS-ULAM STABILITY OF LINEAR DIFFERENCE OPERATORS
DOI:
https://doi.org/10.24297/jam.v14i1.7062Keywords:
Difference equation, Hyers-Ulam stabilityAbstract
In this work, the Hyers-Ulam stability of first order linear difference operator TP defined by
(Tpu)(n) = ∆u(n) - p(n)u(n);
is studied on the Banach space X = l∞, where p(n) is a sequence of reals.
Downloads
Download data is not yet available.
References
[1] C. Alsina, R. Ger; On some inequalities and stability results related to the exponential function, J. Inequ. Appl., 2(1998), 373-380.
[2] T. Aoki; On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[3] D. G. Bourgin; Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57(1951), 223-237.
[4] J. Brzdek, D. Popa, B. Xu; Remarks on stability of linear recurrence of higher order, Appl. Math. Lett., 23(2010), 1459-1463.
[5] D. H. Hyers; On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27(1941), 222-224.
[6] D. H. Hyers, G. Isac, Th. M. Rassias; Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[7] K. W. Jun, Y. H. Lee; A generalization of the Hyers-Ulam-Rassias stability of the Jenson's equation, J. Math. Anal. Appl., 238(1999), 305-315.
[8] S. M. Jung; Hyers-Ulam stability of linear deferential equations of _rst order, Appl. Math. Lett., 17(2004), 1135-1140.
[9] S. M. Jung; Hyers-Ulam stability of linear deferential equations of _rst order(III), J. Math. Anal. Appl., 311(2005), 139-146.
[10] S. M. Jung; Hyers-Ulam stability of linear deferential equations of _rst order(II), Appl. Math. Lett., 19(2006), 854-858.
[11] S. M. Jung; Hyers-Ulam-Rassioas Stability of Functional Equations in Nonlinear Analysis, Springer, 2011.
[12] S. M. Jung; Hyers -Ulam stability of the _rst order matrix deference equations, Adv. Di_er. Equs., 2015(2015), 1-13.
[13] Y. Li, L. Hua; Hyers-Ulam stability of a polynomial equation, Banach J. Math. Anal., 3(2009), 86-90.
[14] T. Miura, S. E. Takahasi, H. Choda; On the Hyers-Ulam stability of real continuous function valued deferential map, Tokyo J. Math., (2001), 467-476.
[15] T. Miura; On the Hyers -Ulam stability of a differentiable map, Sci. Math. Japan, 55(2002), 17-24.
[16] T. Miura, S. M. Jung, S. E. Takahasi; Hyers-Ulam stability of the banach space valued linear deferential equations y0 = _y, Korean Math. Soc., 41(2004), 995-1005.
[17] T. Miura, H. Oka, S. E. Takahasi, N. Niwa; Hyers-Ulam stability of the _rst order linear deferential equations for Banach space valued holomorphic mappings, J. Math. Ineq., 1(2007), 377-385.
[18] M. Obloza; Hyers stability of the linear deferential equation, Rocznik Nauk-Dydakt, Proce. Mat., 13(1993), 259-270.
[19] D. Popa; Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309(2005), 591-597.
[20] Th. M. Rassias; On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[21] Th. M. Rassias; On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), 23-30.
[22] S. E. Takahasi, H. Takagi, T. Miura, S. Miyajima; The Hyers-Ulam stability constants of _rst order linear deferential operators, J. Math. Anal. Appl., 296(2004), 403-409.
[23] A. K. Tripathy, A. Satapathy; Hyers-Ulam stability of fourth order Euler's di_erential equations, J. Comp. Sci. Appl. Math., 1(2015), 49-58.
[24] A. K. Tripathy; Hyers-Ulam stability of second order linear di_erence equations, Int. J. Di_. Equs. Appl., 1(2017), 53-65.
[25] S. M. Ulam; Problems in Modern Mathematics, Chapter VI, Wiley, New York (1964).
[2] T. Aoki; On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[3] D. G. Bourgin; Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57(1951), 223-237.
[4] J. Brzdek, D. Popa, B. Xu; Remarks on stability of linear recurrence of higher order, Appl. Math. Lett., 23(2010), 1459-1463.
[5] D. H. Hyers; On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27(1941), 222-224.
[6] D. H. Hyers, G. Isac, Th. M. Rassias; Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[7] K. W. Jun, Y. H. Lee; A generalization of the Hyers-Ulam-Rassias stability of the Jenson's equation, J. Math. Anal. Appl., 238(1999), 305-315.
[8] S. M. Jung; Hyers-Ulam stability of linear deferential equations of _rst order, Appl. Math. Lett., 17(2004), 1135-1140.
[9] S. M. Jung; Hyers-Ulam stability of linear deferential equations of _rst order(III), J. Math. Anal. Appl., 311(2005), 139-146.
[10] S. M. Jung; Hyers-Ulam stability of linear deferential equations of _rst order(II), Appl. Math. Lett., 19(2006), 854-858.
[11] S. M. Jung; Hyers-Ulam-Rassioas Stability of Functional Equations in Nonlinear Analysis, Springer, 2011.
[12] S. M. Jung; Hyers -Ulam stability of the _rst order matrix deference equations, Adv. Di_er. Equs., 2015(2015), 1-13.
[13] Y. Li, L. Hua; Hyers-Ulam stability of a polynomial equation, Banach J. Math. Anal., 3(2009), 86-90.
[14] T. Miura, S. E. Takahasi, H. Choda; On the Hyers-Ulam stability of real continuous function valued deferential map, Tokyo J. Math., (2001), 467-476.
[15] T. Miura; On the Hyers -Ulam stability of a differentiable map, Sci. Math. Japan, 55(2002), 17-24.
[16] T. Miura, S. M. Jung, S. E. Takahasi; Hyers-Ulam stability of the banach space valued linear deferential equations y0 = _y, Korean Math. Soc., 41(2004), 995-1005.
[17] T. Miura, H. Oka, S. E. Takahasi, N. Niwa; Hyers-Ulam stability of the _rst order linear deferential equations for Banach space valued holomorphic mappings, J. Math. Ineq., 1(2007), 377-385.
[18] M. Obloza; Hyers stability of the linear deferential equation, Rocznik Nauk-Dydakt, Proce. Mat., 13(1993), 259-270.
[19] D. Popa; Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309(2005), 591-597.
[20] Th. M. Rassias; On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[21] Th. M. Rassias; On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), 23-30.
[22] S. E. Takahasi, H. Takagi, T. Miura, S. Miyajima; The Hyers-Ulam stability constants of _rst order linear deferential operators, J. Math. Anal. Appl., 296(2004), 403-409.
[23] A. K. Tripathy, A. Satapathy; Hyers-Ulam stability of fourth order Euler's di_erential equations, J. Comp. Sci. Appl. Math., 1(2015), 49-58.
[24] A. K. Tripathy; Hyers-Ulam stability of second order linear di_erence equations, Int. J. Di_. Equs. Appl., 1(2017), 53-65.
[25] S. M. Ulam; Problems in Modern Mathematics, Chapter VI, Wiley, New York (1964).
Downloads
Published
2018-03-10
How to Cite
Tripathy, A. K., & Senapati, P. (2018). HYERS-ULAM STABILITY OF FIRST ORDER LINEAR DIFFERENCE OPERATORS ON BANACH SPACE: HYERS-ULAM STABILITY OF LINEAR DIFFERENCE OPERATORS. JOURNAL OF ADVANCES IN MATHEMATICS, 14(1), 7475–7485. https://doi.org/10.24297/jam.v14i1.7062
Issue
Section
Articles
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.