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Abstract

In this work, the Hyers-Ulam stability of first order linear difference operator Tp

defined by

(Tpu)(n) = 4u(n)− p(n)u(n),

is studied on the Banach space X = l∞, where p(n) is a sequence of reals.
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1 Introduction

Let X = l∞ be the Banach space of all real valued functions u(n) defined for n ≥ 0. Let
D(I,X) be the linear space of all X−valued functions on an open interval I = (a, b + 1) ⊂
N(0) = {0, 1, 2, ...}, a < b. We define

‖f‖∞ = sup{‖f(n)‖, n ∈ I}

for every f ∈ D(I,X). Define the linear difference operator Tp : D(I,X)→ D(I,X) by

(Tpu)(n) = 4u(n)− p(n)u(n), ∀u ∈ D(I,X),∀ n ∈ I. (1.1)
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We notice that Tp is onto. Indeed, for every v ∈ D(I,X)

u(n) =
n−1∏
i=n0

(1 + p(i))
n−1∑
s=n0

v(s)

(
s∏

i=n0

(1 + p(i))

)−1
satisfies Tp = v. Conversely, the general solution of Tp = v is of the form

u(n) =
n−1∏
i=n0

(1 + p(i))

x0 +
n−1∑
s=n0

v(s)

(
s∏

i=n0

(1 + p(i))

)−1
for every n0, n ∈ I and x0 ∈ X is an arbitrary element.

DEFINITION 1.1 We say that the difference operator Tp has the Hyers-Ulam stability,
if there exists a constant K ≥ 0 with the property: For every ε ≥ 0 and u, v ∈ D(I,X)
satisfying ‖Tpu−v‖∞ ≤ ε there exists u0 ∈ D(I,X) such that Tpu0 = v and ‖u−uo‖∞ ≤ Kε.
We call such K a HUS constant for Tp. If, in addition, minimum of all such K ′s exists,
then we call it the HUS constant for Tp.

In 1940 [25], S. M. Ulam posed the problem: When can we assert that approximate
solution of a functional equation can be approximated by a solution of the corresponding
equation? before the audience at the University of Wisconsin which was first answered by
D. H. Hyers [5] on Banach space. Thereafter, T. Aoki [2], D. H. Bourgin [3] and Th. M.
Rassias [20] improved the result of Hyers. For more details, we refer the readers to the books
by Hyers et al. [6] and monograph by S. M. Jung [11]. After that many researchers have
extended the Ulam’s stability problems to other functional equations and generalized Hyer’s
result in various directions. Recently, the Ulam’s stability problem for functional equations
has been replaced by stability of differential and difference equations (see for e.g. [[1], [7],
[8]- [10], [12], [13], [14], [15], [18], [21], [23]], [19], [24]).

In [24], Tripathy has studied the Hyers-Ulam stability of the following difference equa-
tions:

y(n+ 1)− p(n)y(n)− r(n) = 0,

y(n+ 2) + αy(n+ 1) + βy(n) = 0,

y(n+ 2) + αy(n+ 1) + βy(n) = r(n),

y(n+ 2)− α(n)y(n+ 1) + β(n)y(n) = r(n),

where α, β, p and r are sequences of reals. In this work, our objective is to study the Hyers-
Ulam stability of the operator Tp followed by (1.1) on Banach space in accordance with the
necessary and sufficient condition.

On Hyers-Ulam stability, several works have been done in the direction of differential
equations. Obloza seems to be the first author who has investigated the Hyers-Ulam stability
of linear differential equations(see for e.g[[18], [21]] ). After that, Alsina and Ger published
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their work [1], where they have proved the Hyers-Ulam stability of the differential equation
y

′
(t) = y(t). We remark here that absolutely there is no such work on (1.1). We use the

following lemma in our next discussion:

LEMMA 1.2 [22] Let C be a symmetric set, that is, C = −C in a Banach space B. For
each y ∈ B, we have

sup
x∈C
‖y + x‖ ≥ sup

x∈C
‖x‖.

2 Hyers-Ulam Stability Results

In this section, we discuss the necessary and sufficient conditions for Hyers-Ulam stability
of the operator Tp followed by (1.1) on the Banach space X = l∞. We use the following
notions for our use in the sequel:

1 + p(n) 6= 0, P (n) =

(
n−1∏
i=0

(1 + p(i))

)−1
, n ∈ N(0),

αp = sup
n≥0

1

|P (n)|

∞∑
m=n

|P (m+ 1)|, βp = sup
n≥0

1

|P (n)|

n−1∑
m=0

|P (m+ 1)|.

We use the sign convention
(∏n−1

i=0 (1 + p(i))
)

= 1 for n− 1 < 0.

THEOREM 2.1 Let Tp : D(N(0), X)→ D(N(0), X) be the linear operator defined by

(Tpu)(n) = 4u(n)− p(n)u(n), ∀u ∈ D(N(0), X),∀ n ∈ N(0). (2.1)

If infn≥0 |P (n)| = 0, then Tp has the Hyers-Ulam stability with HUS constant αp if and only
if αp <∞.

Proof. Let ε ≥ 0 and u, v ∈ D(N(0), X) satisfy ‖Tpu − v‖∞ ≤ ε. Set w = Tpu − v. Then
‖w‖∞ ≤ ε and Tpu = v + w implies that

u(n) =
n−1∏
i=0

(1 + p(i))

u(0) +
n−1∑
s=0

(v + w)

(
s∏

i=0

(1 + p(i))

)−1
=

n−1∏
i=0

(1 + p(i))
n−1∑
s=0

v(s)

(
s∏

i=0

(1 + p(i))

)−1

+
n−1∏
i=0

(1 + p(i))

u(0) +
n−1∑
s=0

w(s)

(
s∏

i=0

(1 + p(i))

)−1
=

1

P (n)

n−1∑
s=0

v(s)P (s+ 1) +
1

P (n)

[
u(0) +

n−1∑
s=0

w(s)P (s+ 1)

]
, (2.2)
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and
∑n−1

s=0 w(s)P (s+ 1) ∈ X exists for every n ∈ N(0).

Now, we consider the case when αp <∞. For each n ∈ N(0), it is easy to see that

u(n) =
1

P (n)

n−1∑
s=0

v(s)P (s+ 1) +
1

P (n)

[
u(0) +

∞∑
s=0

w(s)P (s+ 1)

]
− 1

P (n)

∞∑
s=n

w(s)P (s+ 1).

If we put x0 = u(0) +
∑∞

s=0w(s)P (s+ 1) and

u0(n) =
1

P (n)

[
x0 +

n−1∑
s=0

v(s)P (s+ 1)

]
,

then Tpu0 = v and

u(n) = u0(n)− 1

P (n)

∞∑
s=n

w(s)P (s+ 1).

Therefore,

‖u(n)− u0(n)‖ =
1

|P (n)|
‖
∞∑
s=n

w(s)P (s+ 1)‖

implies that

‖u− u0‖∞ ≤ sup
n≥0

ε

|P (n)|

∞∑
s=n

|P (s+ 1)| ≤ εαp.

Hence, Tp has the Hyers-Ulam stability with HUS constant αp. We claim that u0 is deter-
mined uniquely. If not, let u1, u2 ∈ D(N(0), X) be such that

Tpui = v and ‖u− ui‖∞ ≤Mi <∞, (i = 1, 2).

Hence for Tpui = v, we can find xi for i = 1, 2 such that

ui(n) =
1

P (n)

[
xi +

n−1∑
s=0

v(s)P (s+ 1)

]
, ∀ n ∈ N(0).

Therefore, it follows that

‖x1 − x2‖ = |P (n)|‖u1(n)− u2(n)‖ ≤ |P (n)|‖u1 − u2‖∞
≤ |P (n)|(M1 +M2), ∀ n ∈ N(0),

that is, ‖x1 − x2‖ → 0 due to infn≥0 |P (n)| = 0. Consequently, u1 = u2.

Conversely, let’s fix x0 ∈ X such that ‖x0‖ = 1. Set v(n) = |P (n+1)|
P (n+1)

x0 for every n ∈ N(0).

Then for v ∈ D(N(0), X) we can find u ∈ D(N(0), X) such that

u(n) =
1

P (n)

n−1∑
s=0

v(s)P (s+ 1) =
1

P (n)

n−1∑
s=0

|P (s+ 1)|x0
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for which Tpu = v and hence ‖Tpu‖∞ = ‖v‖∞ = 1. Let K be an arbitrary HUS constant for
Tp. So, we can find u∗ ∈ D(N(0), X) such that

Tpu
∗ = 0 and ‖u− u∗‖∞ ≤ K.

It is easy to verify that u∗ = x1

P (n)
for every n ∈ N(0), where x1 = u∗(0) ∈ X. Therefore,

‖
n−1∑
s=0

|P (s+ 1)|x0 − x1‖ = |P (n)|‖ 1

P (n)

n−1∑
s=0

|P (s+ 1)|x0 − u∗‖ ≤ K|P (n)|, n ∈ N(0). (2.3)

As infn≥0 |P (n)| = 0, we can find a strictly monotonic increasing set of values {nj}j∈N ⊂ N(0)
such that

nj →∞ as j →∞ and |P (nj)| <
1

j
, j ∈ N.

From (2.3) it follows that ∣∣∣∣∣‖
nj−1∑
s=0

|P (s+ 1)|x0‖ − ‖x1‖

∣∣∣∣∣ ≤ K

j
,

that is,

nj−1∑
s=0

|P (s+ 1)| <∞ as j →∞.

Also, from (2.2) it is immediate that
∑∞

s=0 |P (s+ 1)|x0 = x1. Consequently,

∞∑
s=n

|P (s+ 1)| = ‖
n−1∑
s=0

|P (s+ 1)|x0 − x1‖ = ‖
n−1∑
s=0

|P (s+ 1)|x0 −
∞∑
s=0

|P (s+ 1)|x0‖ ≤ K|P (n)|

implies that αp ≤ K <∞. Since K is an arbitrary HUS constant, then αp itself is the HUS
constant for Tp. This completes the proof of the theorem.

REMARK 2.2 We predict that βp could be infinity when αp is finite. In this case,∑
|P (m)| <∞. Ultimately, infn≥0 |P (n)| = 0. So, we can find a strictly monotonic increas-

ing set of values {nj}j∈N ⊂ N(0) such that

nj →∞ as j →∞ and |P (nj)| <
1

j
, j ∈ N.

Consequently,

βp ≥
1

|P (nj)|

nj−1∑
m=0

|P (m+ 1)| > j

nj−1∑
m=0

|P (m+ 1)| → ∞ as j →∞.
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THEOREM 2.3 Let Tp : D(N(0), X) → D(N(0), X) be the linear operator defined by
(2.1). If infn≥0 |P (n)| > 0, then Tp has the Hyers-Ulam stability with HUS constant βp if
and only if βp <∞.

Proof. We proceed as in the proof of Theorem 2.1 to obtain (2.2). If we denote

u3(n) =
1

P (n)

[
u(0) +

n−1∑
s=0

v(s)P (s+ 1)

]
,

then Tpu3 = v and

u(n) = u3(n) +
1

P (n)

n−1∑
s=0

w(s)P (s+ 1)

implies that

‖u− u3‖∞ ≤ sup
n≥0

ε

|P (n)|

n−1∑
s=0

|P (s+ 1)| ≤ εβp. (2.4)

Hence, Tp has the Hyers-Ulam stability with HUS constant βp.

Assume that infn≥0 |P (n)| > 0. Proceeding as in the converse part of Theorem 2.1, we
have u∗(n) = x1

P (n)
for n ∈ N(0). Hence,

sup
n≥0
‖u0(n)‖ ≤ ‖x1‖

infn≥0 |P (n)|
<∞

implies that ‖x1‖ ≤ ‖u0‖∞|P (n)| for every n ∈ N(0). Therefore,

n−1∑
m=0

|P (m+ 1)| =

∥∥∥∥∥
n−1∑
m=0

|P (m+ 1)|x0

∥∥∥∥∥ ≤ (K + ‖u0‖∞)|P (n)|,

that is, βp ≤ (K + ‖u0‖∞) <∞. Since K is an arbitrary HUS constant, then βp is the HUS
constant for Tp. Hence, the theorem is proved.

REMARK 2.4 In Theorem 2.1, we have seen that the uniqueness is true when αp <∞.
However, the same may not be true for the case when βp < ∞. In other words, if K is
an arbitrary constant with βp < K, then for every ε > 0 and u, v ∈ D(N(0), X) satisfying
‖Tpu − v‖∞ ≤ ε, we can find infinitely many w ∈ D(N(0), X) such that Tpw = v and
‖u− w‖∞ ≤ Kε.

Indeed, Tp has the Hyers-Ulam stability due to Theorem 2.2 and (2.4) holds. Due to
Theorem 2.4, let’s put σ = infn≥0 |P (n)|. For each x ∈ X with ‖x− u3‖∞ ≤ σε(K − βp), we
can define ux ∈ D(N(0), X) by

ux(n) =
1

P (n)

[
x+

n−1∑
s=0

v(s)P (s+ 1)

]
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such that Tpux = v and

‖u(n)− ux(n)‖ ≤ ‖u(n)− u3(n)‖+ ‖u3(n)− ux(n)‖

≤ εβp +
1

|P (n)|
‖x− u3(n)‖

≤ εβp +
σε

|P (n)|
(K − βp) ≤ Kε

for every n ∈ N(0). Hence, continuing in this way we can find many w ∈ D(N(0), X) such
that Tpw = v and ‖u− w‖∞ ≤ Kε.

REMARK 2.5 Since the uniqueness doesn’t hold in case when βp <∞, then the simul-
taneous question is whether the infimum of all HUS constants, that is,

inf
x∈X

sup
w∈D(N(0),X)
‖w‖∞≤1

sup
n≥0

∥∥∥∥∥ 1

P (n)

[
x+

n−1∑
s=0

w(s)P (s+ 1)

]∥∥∥∥∥
if it exists for Tp is a HUS constant or not. Indeed, if we denote

LTp = inf
x∈X

sup
w∈D(N(0),X)
‖w‖∞≤1

sup
n≥0

∥∥∥∥∥ 1

P (n)

[
x+

n−1∑
s=0

w(s)P (s+ 1)

]∥∥∥∥∥
and

L0(x) = sup
w∈D(N(0),X)
‖w‖∞≤1

sup
n≥0

∥∥∥∥∥ 1

P (n)

[
x+

n−1∑
s=0

w(s)P (s+ 1)

]∥∥∥∥∥ ,
then it is enough to verify that LTp = infx∈X L0(x).

If LTp = ∞, then there is nothing to verify. Assume that LTp < ∞. Let K be an
arbitrary HUS constant for Tp. Then for any w ∈ D(N(0), X) with ‖w‖∞ ≤ 1, there exists
u0 ∈ D(N(0), X) such that Tpu0 = w and ‖u0‖∞ ≤ K with

u0(n) =
1

P (n)

[
x0 +

n−1∑
s=0

w(s)P (s+ 1)

]

for some x0 ∈ X. Indeed, L0(x) ≤ K. Since K is an arbitrary HUS constant for Tp, then
it follows that LTp ≥ infx∈X L0(x). Conversely, we show that LTp ≤ infx∈X L0(x). We may
assume that infx∈X L0(x) <∞.

Here, we assert that L0(x) is a HUS constant for Tp, that is, for any ε > 0 and u, v ∈
D(N(0), X) with ‖Tpu − v‖ ≤ ε, there exists u0 ∈ D(N(0), X) such that Tpu0 = v and
‖u− u0‖∞ ≤ εL0(x).
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If we put εw = Tpu− v for u, v ∈ D(N(0), X), then ‖w‖∞ ≤ 1. Hence for εw + v = Tpu
and for any arbitrary x1 ∈ X, we have

u(n) =
1

P (n)

[
x1 + ε

n−1∑
s=0

w(s)P (s+ 1) +
n−1∑
s=0

v(s)P (s+ 1)

]

for any n ∈ N(0). Let

u0(n) =
1

P (n)

[
x1 − εx+

n−1∑
s=0

v(s)P (s+ 1)

]
, n ∈ N(0).

Then u0 ∈ D(N(0), X) and Tpu0 = v. Consequently,

‖u− u0‖∞ = sup
n≥0
‖u(n)− u0(n)‖

= sup
n≥0

∥∥∥∥∥ ε

P (n)

[
x+

n−1∑
s=0

w(s)P (s+ 1)

]∥∥∥∥∥ ≤ εL0(x)

due to the fact that ‖w‖∞ ≤ 1. Hence, L0(x) is a HUS constant for Tp. Thus, LTp ≤ L0(x).
Since x ∈ X is arbitrary, then it follows that LTp ≤ infx∈X L0(x).

THEOREM 2.6 Let Tp : D(N(0), X) → D(N(0), X) be the linear operator defined by
(2.1). If βp <∞, then Tp has the Hyers-Ulam stability with HUS constant LTp.

Proof. Suppose that βp <∞. Then by Theorem 2.2, Tp has the Hyers-Ulam stability with
HUS constant βp. Because the uniqueness doesn’t hold in case when βp <∞ due to Remark
2.4 and LTp < ∞ exists due to Remark 2.5, then it is sufficient to show that LTp = βp. By
definition, LTp ≤ βp. Hence, we need to show that LTp ≥ βp only. Define a linear operator
S : D(N(0), X)→ D(N(0), X) by

(Sw)(n) =
1

P (n)

n−1∑
s=0

w(s)P (s+ 1), ∀ n ∈ N(0), w ∈ D(N(0), X).

Then for all w ∈ D(N(0), X),

‖Sw‖∞ = sup
n≥0
‖(Sw)(n)‖ = sup

n≥0

∥∥∥∥∥ 1

P (n)

n−1∑
s=0

w(s)P (s+ 1)

∥∥∥∥∥
≤ sup

n≥0

‖w‖∞
|P (n)|

n−1∑
s=0

|P (s+ 1)| = βp‖w‖∞ <∞.

Hence, S is a bounded linear operator with ‖S‖ ≤ βp. Moreover, if x0 is a unit element of

X and u0 = |P (n)|
P (n)

x0 for n ∈ N(0), then u0 ∈ D(N(0), X) and ‖u0‖∞ = 1. Consequently,

‖Su0‖∞ = βp and hence ‖S‖ ≥ βp. Therefore, ‖S‖ = βp.
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Since |P (0)| = 1, then we can find n1 > 0 such that |P (n)| ≥ 1
2

for n ≥ n1 + 1. Thus,

βp ≥
1

|P (n)|

n−1∑
s=0

|P (s+ 1)| ≥ 1

|P (n)|

n−1∑
s=n1

|P (s+ 1)| ≥ (n− n1)

2|P (n)|
,

that is, 1
|P (n)| ≤ 2βp < ∞. Therefore, if we choose x ∈ X arbitrary, then it follows that

x
|P (n)| ∈ D(N(0), X). We notice that the set ({w ∈ D(N(0), X) : ‖w‖∞ ≤ 1}) is a symmetric

set of D(N(0), X). Applying Lemma 1.2, we obtain

sup
w∈D(N(0),X)
‖w‖∞≤1

sup
n≥0

∥∥∥∥∥ 1

P (n)

[
x+

n−1∑
s=0

w(s)P (s+ 1)

]∥∥∥∥∥ = sup
w∈D(N(0),X)
‖w‖∞≤1

sup
n≥0

∥∥∥∥ x

P (n)
+ (Sw)(n)

∥∥∥∥

= sup
w∈D(N(0),X)
‖w‖∞≤1

∥∥∥ x
P

+ (Sw)
∥∥∥
∞
≥ sup

w∈D(N(0),X)
‖w‖∞≤1

‖(Sw)‖∞ = ‖S‖.

which holds for all x ∈ X. Ultimately,

inf
x∈X

sup
w∈D(N(0),X)
‖w‖∞≤1

sup
n≥0

∥∥∥∥∥ 1

P (n)

[
x+

n−1∑
s=0

w(s)P (s+ 1)

]∥∥∥∥∥ ≥ ‖S‖ = βp.

This completes the proof of the theorem.

EXAMPLE 2.7 Consider

(Tpu)(n) = 4u(n)− (1 + (−1)n)u(n)

such that 1 + p(n) = 2 + (−1)n and P (n) =
(∏n−1

i=0 (2 + (−1)i)
)−1

. Indeed,

1

P (n)

∞∑
m=n

P (m+ 1) =
1

(2 + (−1)n)

[
1 +

1

(2 + (−1)n)
+

1

(2 + (−1)n)(2− (−1)n)
+ ...

]
≤ 2

[
1 +

1

1.3
+

1

12.32
+ ...

]
= 3

implies that αp ≤ 3. Hence by Theorem 2.1, Tp has the Hyers-Ulam stability with HUS
constant αp ≤ 3.
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