Average number of Real Roots of Random Trigonometric Polynomial follows non-symmetric Semi-Cauchy Distribution

Authors

  • N.K. Sahoo Faculty of Science and Technology The ICFAI University Tripura Kamalghat,Sadar, pin-799210, India
  • Dr. N. N. Nayak Orissa University of Agriculture & Technology

DOI:

https://doi.org/10.24297/jam.v2i2.6547

Keywords:

Random variables, Joint distribution, Characteristic function, Semi-Cauchy distribution

Abstract

Let a1 (w), a2 (w), a3 (w).. .. ...an (w) be a sequence of mutually independent, identically distributed random variables following semi-cauchy distribution with characteristic function exp (-(C + cosloglt|) |t|),  C>1) . 

Downloads

Download data is not yet available.

Author Biography

Dr. N. N. Nayak, Orissa University of Agriculture & Technology

Ex-Prof of Mathematics Orissa University of Agriculture & Technology, Bhubaneswar-3, Plot No.1242/2171, Siripur Nuasshi, India

Downloads

Published

2013-09-30

How to Cite

Sahoo, N., & Nayak, D. N. N. (2013). Average number of Real Roots of Random Trigonometric Polynomial follows non-symmetric Semi-Cauchy Distribution. JOURNAL OF ADVANCES IN MATHEMATICS, 2(2), 100–109. https://doi.org/10.24297/jam.v2i2.6547

Issue

Section

Articles