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Abstract  

Let 𝑎1 𝜔 , 𝑎2 𝜔 , 𝑎3 𝜔 ……… ……  𝑎𝑛 𝜔  be a sequence of mutually independent, identically distributed random variables 

following semi-cauchy distribution with characteristic function 𝑒𝑥𝑝 − 𝐶 + 𝑐𝑜𝑠𝑙𝑜𝑔 𝑡   𝑡  , 𝐶 > 1. In this work, we obtain the 

average number of real zeros in the interval  0,2𝜋 of trigonometric polynomials of the form 

                                  

for large n . Here the required average is ~ 
2𝑛

 2𝜋−1
 , 𝑛 → ∞.  

Key Words and Phrases: Random variables; Joint distribution; Characteristic function; Semi-Cauchy 

distribution; Random trigonometric equations.  
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1. Introduction  
Let 𝑎1 𝜔 , 𝑎2 𝜔 , 𝑎3 𝜔 ……… ……  𝑎𝑛 𝜔 be a sequence of mutually independent, identically distributed random variables. 

Let  𝑇𝑛 𝜃 denote the trigonometric polynomial  

               

Where  Let  denote the number of real roots of 𝑇𝑛 𝜃 = 0 in interval 𝛽 ≤ 𝜃 ≤ 𝛾. Das [1] first 

time studied (1.1.1) polynomial, assuming that 𝑏𝑘 = 𝑘𝜎 , he proved that the average number of zeros is  
2𝜎+1

2𝜎+3
 

1

2
2𝑛 +

0 𝑛  Where Let  denote the number of real roots of 𝑇𝑛 𝜃 = 0 in interval  𝛽 ≤ 𝜃 ≤ 𝛾. Das [1] 

first time studied (1.1.1) polynomial, assuming that 𝑏𝑘 = 𝑘𝜎 , he proved that the average number of zeros is  
2𝜎+1

2𝜎+3
 

1

2
2𝑛 +

0 𝑛  𝑓𝑜𝑟 𝜎 ≥ −
1

2
 and of order 𝑛 3

2 +𝜎  remaining cases. Also Sambandham [6] studied for non-identically distributed case 

taking 𝑏𝑘 = 𝑘𝜎  (𝜎 ≥ 0) and showed that the average number is  
2𝜎+1

2𝜎+3
 

1

2
2𝑛 + 0  𝑛11+

13

𝑛    except for a set of probability at  
1

𝑛2𝜂
 most where  0 < 𝜂 <

1

13
. 

A recent work of Faramand[3], shows that the asymptotic formula for the expected number of real zeros of a algebraic 

polynomial of the form   for large n, where the coefficients have identical normal distributions 

with 𝜇 ≠ 0 and unit variance, then    

In this paper we consider random trigonometric polynomial whose coefficients are independent but not identically 

distributed. Also we consider  with semi-Cauchy distribution. Das[1] and Sambandham[6] studied the case 
of normal distribution, which is a smooth curve where variance and moment are finite. But in semi-Cauchy distribution both 
mean and variance does not exist. We studied for all cases described the above and as such we have most generalized 
the case of Das and Sambandham.  

 

2. Preliminaries  

First we partition the interval  0,2𝜋  into two types of intervals namely,  

Type -1  

  
 

Type-2 
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We denote 

                  

Let 

                   

 

 

3. Main Results  

Proof of the theorem: By Kac-Rice formula, and the procedure of Das, 

                

where  
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and  

 

In order to estimate 𝑍, we proceed to estimate the maximum value of |𝑆𝑒𝑐𝑘𝜃| in any sub interval of 𝜆. Here we consider 

different cases corresponding to different kind of sub interval of type-1.  

Case-1  
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Case -2  

 

 

Case-3  

 

Case-4  

 

 

Case-5  
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Now from ( 3.3.3) 

 

  

 

Now from (3.3.4) 
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Using the order of X, Y and Z, we get 

 

 

Now from (3.3.1) 
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Lemma :  

 

Proof: Applying Jensen’s theorem to the entire function 𝑇𝑛 𝜃  we have  
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Thus 
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Thus the proof ends. 
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