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Abstract
Let a;(w), ay(w), az(w) ... ... ... ...... a,(w) be a sequence of mutually independent, identically distributed random variables

following semi-cauchy distribution with characteristic function exp(—(C + coslog|t|)|t]),C > 1. In this work, we obtain the
average number of real zeros in the interval (0,27)of trigonometric polynomials of the form

(T]n, (e)cosh + G]“: (w)cos2 + (g}%(m]msaﬂ +--+ {”ﬂ]un[w Jeoznd

2n
),Tl—> C,

for large N . Here the required average is ~ (m
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1. Introduction
Let a; (w), az(w), az (@) ... .o v ... ... a,(w)be a sequence of mutually independent, identically distributed random variables.

Let T,(6)denote the trigonometric polynomial
mn

T.(8) = > () ax(w)coske = 3 (w)coske
Z (k) apl(w)cos ; @i (w)cos

k=1

(1.1.1)

br = (

Where x)- Let Nn (/7. ¥ ) denote the number of real roots of T, (8) = 0 in interval § < 8 <y. Das [1] first

20+1

time studied (1.1.1) polynomial, assuming that b, = k?, he proved that the average number of zeros is (
by =

) 2n+
()
k4 Let Nn (/7. V) denote the number of real roots of T,,(8) = 0 in interval g <6 <y. Das [1]

) 2n +
0(n) forog = —= and of order n(*/2+7) remaining cases. Also Sambandham [6] studied for non-identically distributed case

0(n) Where
20+1

first time studled (1.1.1) polynomial, assuming that b, = k“, he proved that the average number of zeros is (

13
taklng b, =k° (6 = 0) and showed that the average number is (2 +3) 2n+ 0( “7) except for a set of probability at

Tn most where 0 <7 < E'
A recent work of Faramand[3], shows that the asymptotic formula for the expected number of real zeros of a algebraic

polynomial of the form L= 0( ) ax(w) ¥ for large n, where the coefficients have identical normal distributions

—
ENy, {:_m: m}w \'?ﬂ

with ¢ # 0 and unit variance, then
In this paper we consider random trigonometric polynomial whose coefficients are independent but not identically

distributed. Also we consider b = (k) with semi-Cauchy distribution. Das[1] and Sambandham([6] studied the case

of normal distribution, which is a smooth curve where variance and moment are finite. But in semi-Cauchy distribution both
mean and variance does not exist. We studied for all cases described the above and as such we have most generalized
the case of Das and Sambandham.

Theorem: LetT,(8) = }Y;_, bpa(w)coskd, be a random trigonometric polynomial, where
a; (w) are non-identically distributed random variables following semi-cauchy distribution with

characteristic function exp(—(C + coslog | t D|t]), € = 1. f N,,(0,27) denote average number

of real roots of T,,(8) = 0in [0, 21], then the required average is ~ (%) (as n — o).
N

2. Preliminaries

First we partition the interval (0,27) into two types of intervals namely,

Type -1
(5 Gerean=s ) - =
€,——€ — EM———€
2k 2k Z(R — l} Z(k — 1) 2k
k=2 k=2
s T T
; U(n—ﬂ+en+ﬁ—E)U( +ﬁ+en+m—e) = A(say)
k=2 k=2
2 T 2 r 2 r 2
k U(TI—_Z(R_1)+E.}T—Ek—E)U(TI—E-FE,TI—E)
k=2 k=2 <
Type-2
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r U el +E]U[n+__m_%+f]

]U[H—%—E n+%+f] r = A'(say)

T
L U[Eﬂ'—ﬂ—f H——-I—E U[Zﬂ' € ,2m] )

k=1

é

) ete, fork =234 .....1nis — = we

Since the length of smallest interval like (ﬂ ,
2n(n—1)

T
2k " 2(k—1)
take € = 4—“3 which is less than one half of the subintervals. It can be easily verified that with

mn

this value of €, all the subintervals type(1) and type(2) are well defined and no two subintervals

of any type overlap.

We denote the average number of real zeros of T,,(8) in any subinterval of type (1) by

E,(B,v)and that any subinterval of type (2) by M, (@ — €, @ + €) where,

w € {(ﬁ);l , (H — i)zzz (TI + %):zl' (fr + (i’I — 2;—1));2 , 27:} (2.2.1)

We denote

M,,(A)=Sum of expectations of all subintervals of type (1) and

M, (A")=Sum of expectations of all subintervals of type (2)

Let
T,(6) = Z brag(w)coskd = X (2.2.2)
k=1
T!(8) = — Z kb, a1y (w)sinkd = ¥ (2.2.3)
k=1

Then the joint characteristics function of X and Y is given by

G(Z w.} _ E—(c+cosiog{zgzl|zbkcosk9—kmbksinkﬂ|)JI(EE:1|zbkcosk9—kmbksink9|:I (2 2 4.}
as ;' s are independent random variables with common characteristic function
exp{—(c + coslog|t|)|t]}.

3. Main Results

Proof of the theorem: By Kac-Rice formula, and the procedure of Das,

¥
(3.3.1)

MAEWJE%L

where
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n

; n
X(w) = Z (k) lcoske)| (3.3.2)
k=1
: = n
Y(w) = 2 Z (k) |ksink6 — coské| (3.3.3)
k=1
and
Z(w) = Z (Z) |seck8| (ksink6 — cosk)? (3.3.4)
k=1

In order to estimate Z, we proceed to estimate the maximum value of |Seck@| in any sub interval of 2. Here we consider
different cases corresponding to different kind of sub interval of type-1.

Case-1

Ife < & {Zl—E,then
Zn
|cos@| > |ms E— E)l = |sine]

As |cos@| is decreasing in (Dg)

i 1

. w
taking € = ey

= |seckd| < I

- = 7. =@
sine| |SIH_4n3|

4n3

: Sinﬁ T
Aslim, . |—~| =1, (—— - 0asn—- 00)
an?

3 13
sin—sg :
We have, for n > ng, | —#% — 1| < 1 (very small)

an3
T
1 o 1 . 1
e e for n > ngy,takingn =1——,
1—1‘] |Sfﬂm 1+TF kD
w
i 1
We have m > ——— = ———< 4n?,for n > n,
|5mﬁ |S”‘m
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|secké| < and < 4n®

|SI- il‘!-—l | 5 H‘I—l

Then |seck@| < 4n?, for large n.

T

an®

> andr;r:l—i.
1+n T

|ﬂn JT|
an®

So we get, |seckf| >

Case -2

f——l—E«c:E*:::

{k D €, proceed as above

. s . . T
As |cos@| is increasing in (; J:IT)

= |seck@| < 4n?, for n > n,

Similarly we get, |seck@| = 2l , for large n.

Case-3

fT————+€<8<m———¢, also as bef
T e € T —_—-— €, also as before

= |seck8| < 4n?, for n > n,

. 2n—1
Similarly we get, |seck@| > e , for large n.
Case-4

If T — % +e< @ <m+ z%r; — €, then, also as before, we get

|seck8| < 4n®, for n > ng

Similarly we get, |seck8| > 2

fc-r arge n.

3 ¥

We shall leave other two cases by the period T in which we shall we get same upper estimate
for|secksd|.

Case-5

i 21k —z—: + ek < k6 < 21k + €k then

Since |cos@| is increasing in (EHR — :—: + ek, Eirf-c) and decreasing in (2mk, 2wk + €k)
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After calculation, we get

Iseckd| < 4n? and |seckd| > Z=> , for large n.
4n? g
Now from (3.3.2)
. =
X(w) = Z (R’) |coska|
k=1
n? < (n)
2m—1 k
k=1
B 4n32n (1 1)
2m—1 2n
. 4n32n
X(w) = P— 0(1) (3.3.5)

Now from ( 3.3.3)
n 5 '
Y(w) = 2 Z (A) \ksink@ — cosk8|
k=1

n

< ZZ (:) (|ksink8| + |coske|)

k=1

=

<2 (:)(k+1)

=1
= 2™n (1 +0 (%))
Y(w) < 2";1(1 +0 (%)) (3.3.6)

Now from (3.3.4)
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= n s »
Z(w) = Z (A) |seck@| (ksinké — cosk8)?
k=1

n .
< Z (k) |seck8| (ksink8 + cosk6)?

Z 4nd (k +1)2
< n2" (1 +0 (%))

1
Z(w) < nS2n (1 +0 (5)) (3.3.7)
Using the order of X, Y and Z, we get
ey (1 +0 (—)) v
[4xz - v?| _JC@r-1) v n 1 (2m —1)
| xz |~ 4n32n 1\ 16n%0(1)
0(1 1
=W (1+U(11))

) (1+0(%))

- Jer-1  Jo(n)

lo(#,)]

1 (2m—1)

/2
(1+a(%)) - lﬁnﬁﬂ(lj] and (¥,) -1 asn — o
Now from (3.3.1)

y u_}{l am 4;{2—}’2015
" '_HJ; X2

_—

\ (2]7? — l:]

where @ (¥,) =

2n
F:

+y/ (2}1' — 1)

(3.3.8)
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we show that the probability of T,,(€) having an appreciable number of zeros in the
small interval & — e < @ < @ + ¢, i.e in any subinterval of type 2 is small.

Following lemma is necessary for estimation of M, (& — €, @ + €).

Lemma:

P (n(e_} =14+ 1092

) En“E

3n(3n® + 1)5) _ ke

where 1(r) denote the number of zeros of T,,(8) in|z| < 7.

Proof: Applying Jensen’s theorem to the entire function T,,(8) we have

fznmmwma (3.3.9)
0 T.(0) '

n(e) = 2mlog?2

Provided T, (0) = 0. By Gnedenko and kolomogorv[4]
Plw:ap(w) >n}) =1—{F(n) — F(—n)} c:i% (3.3.10)

If max;.,.p|ag(w)| = h,, then from(3.3.10), we have
Tn(ZeefH) < 2e2*€e2m€D  \where

T

D, = Z by = (D
k=1

k=1

Hy
4
gn [

except a set of measure at most least (1 — ). From Gredenko ([5] p.229), as f(t) is

integrable over the entire real line, we get,

. h =
F(x+h)—F(x—nh) 5;[ | f(t)|dt
B 2h 1 (wh > 1)
= D.c—1D where ¢
Now takingx = 0and h = Dne‘“d'f ,we get,

P(|T,(0)| < D,e ™€) = F(D,e ™€) — F(—D,e ")

2

—n*e . —
< Uy € where i, m——
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Hence we have

T, (2¢e")| = 2.D, e ce2ne qnd |T,(0)| < D, e ™'

(

Hence

T.(2€e9)
T,(0)

2 Dnei‘.n“’feznf) . s

Dne—n"'f En“'f

T, (2ee™
or P M < Qe3ntetne | 5 ‘ui (3.3.11)
Tn{.[’j en e
It follows from (3.3.9), we get
_ 3n(n®+ 1)e _
nie) =1+ ' (3.3.12)
log?2

Combining (3.3.11) and (3.3.12), we get,

-

=

.
P [n(ei} =1+ Snn” + ”E}

log2

e nte

. 3n(n® + 1)e
or P{TL(E_}}l-I- ( ' }51 #i
Eil‘!. [

log?2

we have observe that in any interval like [0 — €, @ + €] as well as [0, €] and [2m — €,

3n(n3+1)e
log2

there are altogether 4n such disjoint intervals in A', there fore the probability that T,,(8) has

)zeros does not exceed ‘iﬁs As
e

2m], the probability that T,,(8) has more than (l +

more than 4n (1 + 3n({:;zl)f) zeros in A', does not exceed 4n eﬁi*’ = :rf:,;
" 12n%(n® + 1)e nu'  ny' _ T
PiM, (A") = 4n+ 1092 < e < Tmme putting € =,
e 4
Thus
T
nﬂ’ 3(71.3 + 1)7_1
My =02 s — B
o log2

3ndu' [ 4 (1+ni3)”

+
e';’—” 3n log?2
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T
— 0 asn — oo as e+ is exponentially large .

So M, (A')=0(1) asn — o (3.3.13)
Combining (3.3.8) and (3.3.13), we get,
EN,[0, 2] = M, [0, 2r]
=M, () + M, (1)
2n

V(2r—1)

A

+ 0(1)

Hence we get,
EN. [ﬂ 2 ] =M [ﬂ 2 ] —H —
 &TT y AT asn oo,
n n ,\;(2 ] }
Thus the proof ends.
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