Certain Subclass of Univalent Functions Involving Fractional Q-Calculus Operator
DOI:
https://doi.org/10.24297/jam.v13i4.6442Keywords:
Differential subordination, Differential superordination, Univalent function, Convex function, Komatu integral operator, Hadamard productAbstract
The main object of the present paper is to introduce certain subclass of univalent function associated with the concept of differential subordination. We studied some geometric properties like coefficient inequality and nieghbourhood property, the Hadamard product properties and integral operator mean inequality.
Downloads
Download data is not yet available.
References
[1] S. Abelman, K. A. Selvakumaran, M. M. Rashidi and S. D. Purohit, Subordination conditions for A class of non-bazilevic type defined by using fractional q-Calculus operator, Facta universitatis(NIS) Math. Inform., Vol 32, No 2, (2017), 255-267.
[2] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Int. J. Math. Math. Sci., No. 25-28, (2004), 1429–1436.
[3] T. Bulboaca, Differential subordinations and superordinations, Recent Results, Casa Cartii de Stiinta, Cluj-Napoca, (2005).
[4] A.W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8(3), (1975), 598-601.
[5] A. R. S. Juma and S. R. Kullcarni, On univalent function with negative coefficients by using generalized Salagean operator, Filomat, 21(2), (2007), 173-184.
[6] L.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23, (1925), 481-519.
[7] S. S. Miller, P. T. Mocanu, Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (2000).
[8] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81, (1981), 521-527.
[9] G.S. S˘al˘agean, Subclasses of univalent functions, in Complex analysis fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin.
[10] H.M. Srivastava and S. Owa (Eds), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, (1992).
[2] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Int. J. Math. Math. Sci., No. 25-28, (2004), 1429–1436.
[3] T. Bulboaca, Differential subordinations and superordinations, Recent Results, Casa Cartii de Stiinta, Cluj-Napoca, (2005).
[4] A.W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8(3), (1975), 598-601.
[5] A. R. S. Juma and S. R. Kullcarni, On univalent function with negative coefficients by using generalized Salagean operator, Filomat, 21(2), (2007), 173-184.
[6] L.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23, (1925), 481-519.
[7] S. S. Miller, P. T. Mocanu, Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (2000).
[8] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81, (1981), 521-527.
[9] G.S. S˘al˘agean, Subclasses of univalent functions, in Complex analysis fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin.
[10] H.M. Srivastava and S. Owa (Eds), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, (1992).
Downloads
Published
2017-11-10
How to Cite
HAMEED, M. I. (2017). Certain Subclass of Univalent Functions Involving Fractional Q-Calculus Operator. JOURNAL OF ADVANCES IN MATHEMATICS, 13(4), 7370–7378. https://doi.org/10.24297/jam.v13i4.6442
Issue
Section
Articles
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.