A Meir-Keeler type fixed point theorem in fuzzy metric spaces

Authors

  • Siditë Duraj Faculty of Natural Sciences, University of Shkodra, Shkoder

DOI:

https://doi.org/10.24297/jam.v12i11.16

Keywords:

Fuzzy metric space, fixed point theorem, Meir-Keeler type contraction.

Abstract

In this paper we introduce a new definition of Meir-Keeler type contractions and prove a fixed point theorem for them in fuzzy metric space.

Downloads

Download data is not yet available.

Author Biography

Siditë Duraj, Faculty of Natural Sciences, University of Shkodra, Shkoder

Department of Mathematics

References

[1] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems, 64, (1994) 395-399.
[2] A. Meir and E. Keeler, A theorem on contraction mappings, J.Math.Anal.Appl. 28(1969), 326-329.1,3
[3] A. Razani, A contraction theorem in fuzzy metric spaces, Fixed point theory and Applications, vol 2005, no. 3, pp 257-
265
[4] I. Kramosil and J.Michalek, Fuzzy metric and statistical spaces, kybernetica, 11, (1975) 336-344.
[5] J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J.Math.Anal.Appl. 194, (1995), 293-303.1
[6] J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, Casopis Pro Pestovani Matematiky. 105
94), (1980), 341-344.1
[7] K. Menger, Statistical metrics, Proc. Nat. Acad. sci. (USA), 28 (1942), 535-537
[8] L.A.Zadeh, Fuzzy sets, Inform. and Control., 8 (1965), 338-353
[9] Lj. B. Ciric, A new fixed point theorem for contractive mappings, Publ. Inst. Math. (Beograd) 30(44), (1981), 25-27.1
[10] M. Akkouchi, A Meir-Keeler type common fixed point theorems in four mappings, Opuscula Mathematica, 31 (1)
(2011), 5-14.
[11] M. Grabiec, Fixed point in fuzzy metric spaces, Fuzzy sets and Systems, 27 (1988), 385-389.
[12] S. Heilpern., Fuzzy mappings and fixed point theorems, J.Math. Anal.Appl., 83 91981), 566-569.

Downloads

Published

2016-12-30

How to Cite

Duraj, S. (2016). A Meir-Keeler type fixed point theorem in fuzzy metric spaces. JOURNAL OF ADVANCES IN MATHEMATICS, 12(11), 6778–6784. https://doi.org/10.24297/jam.v12i11.16

Issue

Section

Articles