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Abstract: In this paper we introduce a new definition of Meir-Keeler type contractions and prove a fixed point theorem
for them in fuzzy metric space.
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1. Introduction.

The introduction of the notion of a fuzzy set, is a new way to represent the vagueness in everyday life, by Zadeh [8] in
1965 and proves a turning point in the development of fuzzy mathematics. In 1975, Kramosi and Michalek [4] gave the
notion of fuzzy metric spaces, which could be considered as a reformulation, in the fuzzy context, of the notion of
probabilistic metric space due to Menger [7]

The Banach contraction principle is the most celebrated fixed point theorem. It is very useful, simple, and classical tool in
nonlinear analysis. This principle has many generalizations. For example, in 1969 [2] Meir and Keeler proved a fixed point
theorem for the mappings satisfying a (e-3) contractive condition. Some generalizations of Meir-Keeler fixed point theorem
(see 9, 5, 6) established a class of the contractions called the Mier-Keeler type contraction.

Fixed point theory in fuzzy metric spaces has been developed starting with the work of Heilpern [12]. In [1] George and
Veeramani introduced and studied the notion of fuzzy metric spaces which constitutes a modification of the one due
Kramosil and Michalek. From now on, by fuzzy metric we mean a fuzzy metric in the sense of George and Veeramani.
Many authors have contributed to the development of this theory.

In this paper we will introduce a new Meir-Keeler type contractive condition in fuzzy metric spaces and establish a fixed
point theorem in fuzzy metric spaces by using this Meir- Keeler type contractive condition. Our theorem generalize, unify
and extend many results in literature.

2. Preliminaries.
For convenience we start with the following definitions, lemmas, and theorems.
Definition 1. [1] A binary operation *:[0,1] x[0,1] —[0,1] is a continuous t-norm if it satisfies the following conditions:

(i) * is commutative and associative;
(i) * is continuous;

(i) a*l=a forallaa<[0,1];

(iv) a*b<c=*d whenever a<cand b<dforall a,b,c,d [0,1].

Examples of t-norms are a*b=ab, a*b=min{a,b} and a*b=max{a+b-1,0}.

Definition 2. [1] The 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-

norm and M is a fuzzy seton X 2 % [0, oo[ satisfying the following conditions for all X,Y,Z € X and s, t>0:
) M(x,y,0)=0

i) M(X,y,t)=1forallt>0if and only if X=1,

iy M(X,y,t)=M(y, x,t)

iv) M(X,y,t) *M(y,z,8) <M (X, z,t+5),
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v) M(X,Y,):[0,00[—[0,1] is left continuous.

The function M(X,Y,t)denotes the degree of nearness between x and y with respect to t. So, we identify
M(X,y,t)=1with x=Yy and M (X, y,t) =0 with .

Lemma 3. [11]. M(X, Y, *) is nondecreasing for all x,y in X .

Remarks 4. [1].

(1). In a fuzzy metric space (X, M,*), whenever M(X,y,t)>1—rfor x,ye X, t>0, 0<r<1, we can find a
0<ty <tsuchthat M(X,Yy,t)>1—-r.

(2) Forany L >1,, we can find a I3 such that I *I3 2T, and for any I, we can find a Igsuch that Iy *Ig =1,
(K, 13,1,15€(0,1).

-1
Example 5. [1] Let X =R. Define a*b=ab and M(x,y,t)= exp(b(;—y'} for all X,ye X, t>0. Then

(X, M, =) is a fuzzy metric space.

Each fuzzy metric (X,M,*) on X generates a T, -topology on X , which has as base the family of open balls
{B(x,r,t):xe X,re(0,2),t >0} , where B(x,r,t)={ye X;M(x,y,t)>1-r}

Definition 6. [11] A sequence {X,} in a fuzzy metric space (X, M, *) is said to be:

(i) a Cauchy sequence ifforall t >0 and p>0, lim M(Xn+p,xn,t)=1 ;
nN—o0
(i) convergent to a point X € X ifforall t >0, lim M(x,, x,t) =1.
Nn—o0

Notice that the limit of sequence in fuzzy metric space is unique.

Definition 7.[11] A fuzzy metric space (X, M,*) is complete if and only if every Cauchy sequence in X is
convergent.

1
Example 8. [10]. Let X ={=:ne N} and let * be the continuous t-norm defined by a*b=ab for all
n

a,be[0,1]. For each t>0 and X,ye€ X, define (X,M,*) by M(X,y,t)zt and M(x,y,0)=0.

v
+|x |

Clearly, (X, M,*) is a complete fuzzy metric space.

Theorem 9. [2] ( Fixed point theorem of Meir-Keeler ) Let (X,d) be a metric space and let T be a mapping from X
into itself satisfying the following condition:

Ve >0, 36(g)>0suchthat e <d(x,y)<e+0(e) = d(Tx,Ty)<e

Then T has a unique fixed point Z € X . Moreover, for all X € X , the sequence {TnX} converges to z.

A. Razani in [3] defined fuzzy e-contractive mapping.

Definition 10. [3] . Let (X, M, *) be a fuzzy metric space and 0 <& <1. Amapping T : X — X s called fuzzy e-
contractive if L—e <M (X, y,t) <1 = M(TX,Ty,t) > M(X,y,t)

The following theorem has been proved by Razani in [3 (5)].

Theorem 11. [3]. Let (X, M,*) be a complete fuzzy metric space, where the continuous t-norm is defined as
a*b=min{a,b}. Suppose T:X — X is a fuzzy e-contractive, such that there exists a point X€ X whose
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sequence of iterates (T"X) contains a convergent subsequence (T"'X). Then &= lim T" X is e periodic point, that is,
i—>o0

there is a positive integer k such that T k§ =£

3. MAIN RESULTS.

Definition 3.1.[1] Let (X, M,*) be a fuzzy metric space. A subset A of X is said to be F-bounded if and only if there
exist t >0 and O <r <1 such that M (X, y,t)>1—r forall X,y A.

Definition 3.2. Let (X, M, *) be a fuzzy metric space. For A X we denote the diameter of A by 5(A) and

S(A) =inf{M(x, y,t):x,ye A t>0}

If A is F-bounded then S(A) >r forsome O0<r <1.

Preposition 3.3. Let (X, M, *) be a fuzzy metric space. If for A,B < X , we have Ac B < X then 6(A)>5(B) .
Let (X,) be a sequence in fuzzy metric space .

Define &; ((X,)) =inf {M(x,, X, t):m=>i,k > j,t>0} V(i j)eN>. 1)

Preposition 3.4. Let (X,M,*) be a fuzzy metric space and (X,) a sequence in it. If one i, {x,H>r for

0<r, <1 thanfor all 5; ({X,}) existsome r, 0<r <1 suchthat &; ({x,})>r.

Proof. Denote A=inf {M(x

m, I !

t), l<m<|0,t>0} and B—mf{M(xk, o 1) l<k<jo,'[>0}

m, I '

Since the sets {M(X t), 1<m<|0,t>0} {M(Xk,XjO,t):lﬁkS jO,t>O} are finite, than 0 < A, B <1

Let us prove the preposition for oy, ({X,}) -

For m>i; and K> j,, by (1) we have M (X, Y, t) =6, ; ((X,))> 1, .
For m2i, k < j, we have
t t
M (X, %, 1) > M (X, X, )*M(xjo,xk,E)zdojo(xn)*M(xjo,xk,§)>r0*B>0

For m<i,, k= j, we have

5w, () > A*r, >0

M (X, X, t) > M (X - m,2

) M(Xl’xk’ ) M(X

m’l’

For m<i,, k< j, we have

M (X, , X, ,t) > M (x

m’l’

)*M(xio,xk,g)z

M (x; ) M (x;

|1m1 |01]1

)>!=M(xjo,xk,%)zmké‘iojO *B>A*r,*B>0
So, We can give r € (0,1) where r <min{r,, r, * A r, * B, r, * A* B} and we have J;,(X,))>T.
But J; ((X,)) = 0, ((x,))>rfori, je Nand O<r<1.

Corollary 3.5. Let (X, M, *) be a fuzzy metric space and (X,) a sequence in it. The sequences (X,) is bounded if
and only if exists a r € (0,1) such that o, ({X,}) >r.
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Theorem 3.6. Let (X, M,*) be a fuzzy metric space and (X,) a sequence in it. If the sequences (X,) satisfies the
following condition, then it is Cauchy in (X, M, *).

(1) The sequences (X, ) is bounded in (X, M,*)and

Ve>0,areN,36€(0,¢),3e < g, such that e=0<o;({xH<e =M%, X, D) =g whenever
i,jeN,t>0

Proof. Let (X,) be asequencein (X,M,*) satisfying (1). Define

a,=38,, =inf (M(x,x;,1),i=n, j=n,t>0}

For n<m, {M(Xw X;,t),i>m, j>mt>0} {M(xl, ],t),izn,jzn,t>0}, so &, <, and the sequence (¢, ) is

increasing in [0,1]. Hence it converges and lima, = Sup{cxn ‘ne N} =a<l
n—o0
Suppose that a <1. Than exist 6 € (0,a) and n, € N, such that for n>n,

a-o<a,=0,,<a

nn —
For i=ny, j=n, denote k =max{i, j} and we have k > n, and
a-0<9, (xN=a, <6 {6, (x)=a <a.
From the condition (1) for € =a >0 therearere N, 5€(0,&),¢, >¢=a

suchthat a—o <4, ;({x,}) <a = M(x t) > ¢,, whenever i>n,, j=n,,t>0 (2)

i+r 1 J+r ’

So ano+r n0+r Ng+r ((X ))_Inf{M (X|+r’ J+r’t) I >n J 2nO’t>O}Z‘90 >e=a
This is a contradiction. So a=1.
The inequality 1= Ilman = Ilm5 < Ilm M (x

t) <1 implies Ilm M(x ,x_  ,t)=1

n? n+p’ n! Sn+p?

So the sequence (Xn) is Cauchy.
Let (x,)and (y,) be the sequences in a fuzzy metric space. Define &; (X, ), (¥,)) =inf {M(x,,y,,t):m>i,k > j,t >0}

Theorem 3.7. Let (X, M,*) be a complete fuzzy metric space and T a continuous self-mapping define on X. If T
satisfies the following condition, than T has a fixed point u e X .

(1) For all X,y e X, the sequences (T"x) and (T"y) are bounded in (X, M,*) and

Ve>0,3reN,35€(0,¢),35, >¢, such that &—-5<5,((T"X),(T"y)<e =>MT""'xT""xt)>g whenever
i,jeN,t>0.

Proof. Let xe X . We define the iterative sequence {x.} as follows x ., =Tx, , for ne N.

If there exists n, € N such that X, =X, ., than X, is a fixed point of T. Assume then that X, # X, foreach ne N.

Nl
We first shall prove that if T satisfy the conditions (1) the sequence {x,} is a Cauchy sequence.
Substituting X=X, and y=X_,, in (1) we obtain:

the sequence {x,} is bounded in (X, M,*) and

Ve>0,3reN,35€(0,6),35,>¢, such that &-5<5,{xD<e=>MT"xT"xt)>¢ whenever
i, jeNt>0but & ((x,),(¥,) =inf (MT"x T y,t):m>i,k > j,t>0} =inf (MT™"x,T*"x):m>ik > j,t >0}
=inf {M (X0 Xz 1) 1M 20 K> i8>0} = 8 100 (%) (¥,)) and MTE0X T 0 = M (X X oo 1)
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So the sequence {x.} satisfies condition (1) in theorem 3.5, so it is a Cauchy sequence in (X, M, *).

By completeness of space (X, M, #*), there exists U € X such that {x } convergestouand lim M(x,,u,t)=1.
N—o0

We will show that U is the fixed point of Ti.e. M (u,Tu,t) =1. By the continuous of T we can have
lim M(x,,u,t) = lim M(Tx,_q,u,t) = lim M(Tu,u,t) =1 and u is a fixed point of T.
Nn—o0 Nn—o0 N—»00
Theorem 3.8. Let (X,M,*) be a complete fuzzy metric space, where the continuous t-norm is defined as
axb=ab (axb=min{a,b}) Let T : X — X be a self mapping satisfying the following condition
(1) given £ >0, there exists a & € (0, £) such that for all X,y e X

e—o<mx,y,t)y<e = MTxTy,t)>¢

where m(X, y,t) =min {M (X, ¥, 1), M (X, Tx, ), M (y, Ty, t), M (x, Ty, 2t), M (Y, T, 1), M (X,T'\;,(t))(l\g(t);,Ty,t)}

Then T has a unique fixed point.

Proof. Let X, € X be an arbitrary point. Consider the sequence {X,}={T"X,}. We will prove that {X,} is a Cauchy
sequence in X. Let M, = M (X, Xp41,1) , t0.

If for some n, M|, =1 than M, = M (X, X,,1,t) =1 implies that X, = X,,4 =TX, so T has a fixed point.
Now suppose that M, #1for all n.

If m(X,Yy,t)=1 for some X,y e X we have that M (X,Tx,t) =1 and X=TX . Hence x is a fixed point for T.
If m(X,y,t)<lforall X,ye X thanby (1) we have m(Xx,y,t) <e<M(Tx,Ty,t). (2

Forany ne N

Mp =M (X, Xpi1,8) = M (TX 1, TX, 1) > M(X_, X, 1)
M (Xp_1, Xn» £, M (X1, TX1, 1), M (X, TX,, £), M (X1, X, , 2t),

=min M (X1, TXn_q1, )M (X, TX,,t =
M(Xn.TXn,l.t), ( n—1 n-1 ) ( n n )
M (Xp_1, X, t)

M (Xn—l’ Xn’t)v M (Xn—l’ Xn vt)v M (Xn ) Xn+1’t)’ M (Xn—l’ Xni1 2t),
min M (Xp_q1, X, )M (X, Xpaq, T =
M(Xn,Xn,t), (n—l n ) (n n+1 )
M (Xp_1, Xn,t)

Min {M (X_1, Xn, £), M (X, X1, £), M (X1, X1, 28, M (X, X1, 1)}

Since M (X_1, X, )M (X, X51, 1) <M (X1, X141, 2t) than

M, =M Xy, Xni1,t) > M(X g, X, 1) = Min{M (X1, %5, 1), M (X0, X128, M (X1, Xn41, 28) } >
min {M (X,_1, %o, £), M (X, Xn41,£), M (X1, X0, )M (X0, X g, 8) = MIindM (X1, %, 1), M (X0, X041, 1)} =
min{M,_;,M,}=M_; . (2

Thus the sequence {Mn} is strictly increasing. Since {Mn} c[0,1] then {Mn} converges to some S<[0,1] ,
where S =Sup{Mn} .

If s<1 than exists & >0and me N such that for N>m, S—6 <M,_; =M(X,_1,X,,t) <S. By the condition (1)
and (2) , we have
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S—0<M 1 =mX,_1,%,)<s = M(TX,_1,TX,,t)=s

But M (TX,_1, TX,,t) = M (X,, X 41,t) =M,, =, thatis a contradiction. So S=1= lim M (X,, Xy,1,1) .
nN—0

t t t
For ke N, M(X,, Xp.k 1) > M(xn,xml,E)M(xn+1,xn+2,E)...M(xn+k_1,xn+k,i) and

lim M (X, X« t) =1. So the sequence {Xn} is Cauchy sequence in (X, M, *).
n—o0

By completeness of space (X, M, *), there exists U e X such that {x } convergestouand lim M(x,,u,t)=1.
N—o0

We will show that U is the fixed point of Ti.e. M (u,Tu,t)=1.

M (x,,u,t), M(X,,Tx,,t), M (Tu,u,t), M (x,,Tu, 2t),
M (X, TXy, )M (Tu, u, t)
M (x,,u,t)

M (Tx,,Tu,t) > m(x,,u) =min

M (Tx,, u,t),
Taking the limit as N —o0, we have M(u,Tu,t) >M(u,Tu,t) , a contradiction. Therefore M (u,Tu,t)=1 and
u=Tu.

To show the uniqueness, we assume that z is another fixed point of T. If M (Z, u,t) <1, from (2) it follows that

M (z,u,t),M(z,Tz,t), M (Tu,u,t),M(z,Tu, 2t),

M(z,u,t) =M (Tz,Tu,t) >m(z,u,t) = min M (T2, u1) M (z,Tz,t)M (Tu,u,t)
B M (z,u,t)
M (z,u,t),M(z,Tz,t), M (Tu,u,t), M (z,Tu, 2t),
=min M (T2,u.0), M (z,Tz,t)M (Tu,u,t) =M(z,u,t)
M (z,u,t)

which is a contradiction. Then M (z,u,t) =1 and z =u . This proves the uniqueness of the fixed point and completes the
proof of the theorem.

Remark 3.9. The mapping in theorem is not necessary to be continuous.
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