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1. Introduction. 

The introduction of the notion of a fuzzy set, is a new way to represent the vagueness in everyday life, by Zadeh [8] in 
1965 and proves a turning point in the development of fuzzy mathematics. In 1975, Kramosi and Michalek [4] gave the 
notion of fuzzy metric spaces, which could be considered as a reformulation, in the fuzzy context, of the notion of 
probabilistic metric space due to Menger [7] 

The Banach contraction principle is the most celebrated fixed point theorem. It is very useful, simple, and classical tool in 
nonlinear analysis. This principle has many generalizations. For example, in 1969 [2] Meir and Keeler proved a fixed point 

theorem for the mappings satisfying a (-) contractive condition. Some generalizations of Meir-Keeler fixed point theorem 
(see 9, 5, 6) established a class of the contractions called the Mier-Keeler type contraction. 

Fixed point theory in fuzzy metric spaces has been developed starting with the work of Heilpern [12]. In [1] George and 
Veeramani introduced and studied the notion of fuzzy metric spaces which constitutes a modification of the one due 
Kramosil and Michalek. From now on, by fuzzy metric we mean a fuzzy metric in the sense of George and Veeramani. 
Many authors have contributed to the development of this theory.  

In this paper we will introduce a new Meir-Keeler type contractive condition in fuzzy metric spaces and establish a fixed 
point theorem in fuzzy metric spaces by using this Meir- Keeler type contractive condition. Our theorem generalize, unify 
and extend many results in literature.   

2. Preliminaries. 

For convenience we start with the following definitions, lemmas, and theorems. 

Definition 1. [1] A binary operation :[0,1] [0,1] [0,1]    is a continuous t-norm if it satisfies the following conditions: 

(i)   is commutative and associative; 

(ii)   is continuous; 

(iii) 1a a   for all a [0,1]a ; 

(iv) a b c d   whenever a c and b d for all , , , [0,1]a b c d . 

Examples of t-norms are a b ab  , min{ , }a b a b   and max{ 1,0}a b a b    .   

Definition 2. [1]  The 3-tuple ( , , )X M   is said to be a fuzzy metric space if X is an arbitrary set,   is a continuous t-

norm and M is a fuzzy set on 
2 [0, [X   satisfying the following conditions for all , ,x y z X  and s, t>0:  

i) ( , ,0) 0M x y    

ii) ( , , ) 1M x y t  for all t>0 if and only if x y , 

iii) ( , , ) ( , , )M x y t M y x t  

iv) ( , , ) ( , , ) ( , , )M x y t M y z s M x z t s   , 
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v) ( , , ) :[0, [ [0,1]M x y     is left continuous.  

The function ( , , )M x y t denotes the degree of nearness between x and y with respect to t. So, we identify 

( , , ) 1M x y t  with x y  and ( , , ) 0M x y t  with . 

Lemma 3. [11]. ( , , )M x y  is nondecreasing for all x,y in X . 

Remarks 4. [1].  

(1). In a fuzzy metric space ( , , )X M  , whenever ( , , ) 1M x y t r  for , ,  0,  0 1x y X t r    , we can find a 

00 t t  such that 0( , , ) 1M x y t r  . 

(2) For any 1 2r r , we can find a 3r  such that 1 3 2r r r   and for any 4r , we can find a 5r such that 5 5 4r r r   

1 2 3 4 5( , , , , (0,1))r r r r r  . 

Example 5. [1] Let X =R. Define a b ab   and 

1

( , , ) exp
x y

M x y t
t


  

    
   

 for all , ,  0x y X t  . Then 

( , , )X M   is a fuzzy metric space. 

Each fuzzy metric ( , , )X M    on X  generates a 2T -topology on X , which has as  base the family of open balls 

{ ( , , ) : , (0,1), 0}B x r t x X r t    , where ( , , ) { ; ( , , ) 1 }B x r t y X M x y t r     

Definition 6. [11] A sequence { }nx  in a fuzzy metric space ( , , )X M   is said to be: 

(i) a Cauchy sequence if for all 0t   and 0p  , lim ( , , ) 1n p n
n

M x x t


  ; 

(ii) convergent to a point x X  if for all 0t  , lim ( , , ) 1n
n

M x x t


 . 

Notice that the limit of sequence in fuzzy metric space is unique.   

Definition 7.[11]  A fuzzy metric space ( , , )X M    is complete if and only if every Cauchy sequence in X is 

convergent. 

Example 8. [10]. Let 
1

{ : }X n N
n

   and let   be the continuous t-norm defined by a b ab   for all 

, [0,1]a b . For each 0t   and ,x y X , define ( , , )X M   by ( , , )
t

M x y t
t x y


 

  and ( , ,0) 0M x y  . 

Clearly, ( , , )X M   is a complete fuzzy metric space. 

Theorem 9. [2] ( Fixed point theorem of Meir-Keeler ) Let ( , )X d  be a metric space and let T be a mapping from X  

into itself satisfying the following condition:  

  0,  ( ) 0 such that ( , ) ( )  d(Tx,Ty)<d x y                   

Then T has a unique fixed point z X  . Moreover, for all x X , the sequence { }nT x  converges to z.     

A. Razani in [3] defined fuzzy -contractive mapping. 

Definition 10. [3] . Let ( , , )X M   be a fuzzy metric space and 0 1  . A mapping :T X X  is called fuzzy -

contractive if 1 ( , , ) 1    ( , , ) ( , , )M x y t M Tx Ty t M x y t         

The following theorem has been proved by Razani in [3 (5)]. 

Theorem 11. [3]. Let ( , , )X M   be a complete fuzzy metric space, where the continuous t-norm is defined as 

min{ , }a b a b  . Suppose :T X X  is a fuzzy -contractive, such that there exists a point x X  whose 
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sequence of iterates ( )nT x  contains a convergent subsequence ( )in
T x . Then lim in

i
T x


  is e periodic point, that is, 

there is a positive integer k such that 
kT              

3. MAIN RESULTS. 

Definition 3.1.[1]  Let ( , , )X M  be a fuzzy metric space. A subset A of X is said to be F-bounded if and only if there 

exist 0 and 0 1t r    such that ( , , ) 1M x y t r   for all ,x y A . 

Definition 3.2. Let ( , , )X M  be a fuzzy metric space. For A X  we denote the diameter of A by ( )A  and  

( ) inf{ ( , , ) : , , 0}A M x y t x y A t     

If A  is F-bounded then ( )A r   for some 0 1r  .  

Preposition 3.3. Let ( , , )X M  be a fuzzy metric space. If for ,A B X , we have A B X   then ( ) ( )A B  .    

Let ( )nx be a sequence in fuzzy metric space  . 

 Define  (( )) inf ( , , ) : , , 0ij n m kx M x x t m i k j t     2( , )i j N  . (1) 

Preposition 3.4. Let ( , , )X M 
 
be a fuzzy metric space and ( )nx  a sequence in it. If one 

0 0 0({ })i j nx r    for 

00 1r   than for all ({ })ij nx  exist some r ,  0 1r 
 
such that ({ })ij nx r  .   

Proof. Denote  
0, 0inf ( , ),1 , 0m iA M x x t m i t     and  

0 0inf ( , , ) :1 , 0k jB M x x t k j t     

Since the sets  
0, 0( , ),1 , 0m iM x x t m i t   ,  

0 0( , , ) :1 , 0k jM x x t k j t   are finite, than 0 , 1A B    

Let us prove the preposition for 11({ })nx .  

For 0m i  and 0k j , by (1) we have 
0 0 0( , , ) (( ))m k i j nM x y t x r  .    

For  0m i 0k j  we have  

0 0 0 0 0 0( , , ) ( , , ) ( , , ) ( ) ( , , ) 0
2 2 2

m k m j j k i j n j k

t t t
M x x t M x x M x x x M x x r B        

For 0 0,  m i k j   we have 

0 0 0 0 0 0( , , ) ( , , ) ( , , ) ( , , ) (( )) 0
2 2 2

m k m i i k i m i j n

t t t
M x x t M x x M x x M x x x A r          

For 0 0,  m i k j   we have 

  
0 0

0 0 0 0 0 0 0

( , , ) ( , , ) ( , , )
2 2

( , , ) ( , , ) ( , , ) 0
2 4 4

m k m i i k

i m i j j k i j

t t
M x x t M x x M x x

t t t
M x x M x x M x x A B A r B

  

        

 

So, We can give (0,1)r  where 
0 0 0 0min{ , , , }r r r A r B r A B      and we have 11( ))nx r  .  

But (( ))ij nx  11(( ))nx r  for ,i j N and  0 1r  . 

Corollary 3.5. Let ( , , )X M   be a fuzzy metric space and ( )nx
 
 a sequence in it. The sequences ( )nx  is bounded if 

and only if exists a (0,1)r  such that 11({ })nx r  . 
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Theorem 3.6. Let ( , , )X M   be a fuzzy metric space and ( )nx
 
a sequence in it. If the sequences ( )nx

 
satisfies the 

following condition, then it is Cauchy in ( , , )X M  .  

(1) The sequences ( )nx  is bounded in ( , , )X M  and  

00, , (0, ),r N            such that ({ })ij nx      0( , , )i r j rM x x t     whenever 

, , 0i j N t 
 

Proof. Let ( )nx  be a sequence in ( , , )X M    satisfying (1). Define  

n =  , inf ( , , ), , , 0n n i jM x x t i n j n t      

For n m ,    ( , , ), , , 0 ( , , ), , , 0i j i jM x x t i m j m t M x x t i n j n t       , so n m   and the sequence ( )n  is 

increasing in [0,1]. Hence it converges and  lim sup : 1n n
n

a n N a


     

Suppose that 1a  . Than exist (0, )a   and 
0n N , such that for 

0n n   

,n n na a         

For 
0 0,i n j n    denote max{ , }k i j  and we have 

0k n  and 

0 0 0, ,(( )) ({ }) (( ))n n n n ij n k k n ka x x x a            .   

From the condition (1) for 0a    there are
0,  (0, ),r N a        

such that 
, ({ })i j na x a    0( , , )i r j rM x x t    , whenever 

0 0, , 0i n j n t  
  

( 2)  

So 
0 0 0, 0 0 0(( )) inf{ ( , , ) : , , 0}n r n r n r n i r j rx M x x t i n j n t a                

This is a contradiction. So 1a  .  

The inequality ,1 lim lim lim ( , , ) 1n n n n n p
n n n

a M x x t 
  

     implies lim ( , , ) 1n n p
n

M x x t


    

So the sequence ( )nx  is Cauchy. 

Let ( )nx and ( )ny be the sequences in a fuzzy metric space. Define  (( ), ( )) inf ( , , ) : , , 0ij n n m kx y M x y t m i k j t      

Theorem 3.7. Let ( , , )X M   be a complete fuzzy metric space and T a continuous self-mapping define on X. If T 

satisfies the following condition, than T has a fixed point u X .   

(1) For all ,x y X , the sequences ( )nT x  and ( )nT y are bounded in ( , , )X M 
 
and  

00, , (0, ),r N            , such that (( ), ( ))n n

ij T x T y     
0( , , )i r j rM T x T x t     whenever 

, , 0i j N t  .  

Proof. Let x X  . We define the iterative sequence { }nx as follows 1n nx Tx  , for n N .  

If there exists on N  such that 
0 0 1n nx x   than 

0nx  is a fixed point of T. Assume then that 1n nx x  for each n N . 

We first shall prove that if T satisfy the conditions (1) the sequence { }nx  is a Cauchy sequence. 

 Substituting nx x  and 1ny x   in (1) we obtain:  

the sequence { }nx  is bounded in ( , , )X M   and     

00, , (0, ),r N            , such that ({ })ij nx     
0( , , )i r j rM T x T x t     whenever 

, , 0i j N t  but    (( ), ( )) inf ( , , ) : , , 0m k

ij n nx y M T x T y t m i k j t      =  1inf ( , ) : , , 0m n k nM T x T x m i k j t       

=  1inf ( , , ) : , , 0m n k nM x x t m i k j t       = 
, 1 (( ), ( ))i n j n n nx y   

 and 1 1( , , ) ( , , )i r j r

n n n i r n j rM T x T x t M x x t 

      . 
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So the sequence { }nx  satisfies condition (1) in theorem 3.5, so it is a Cauchy sequence in ( , , )X M  .  

By completeness of space ( , , )X M  , there exists u X  such that { }nx  converges to u and lim ( , , ) 1n
n

M x u t


  .  

We will show that u  is the fixed point of T i.e. ( , , ) 1M u Tu t  . By the continuous of T  we can have 

1lim ( , , ) lim ( , , ) lim ( , , ) 1n n
n n n

M x u t M Tx u t M Tu u t
  

    and u is a fixed point of T. 

Theorem 3.8. Let ( , , )X M   be a complete fuzzy metric space, where the continuous t-norm is defined as 

a b ab  ( min{ , })a b a b   Let :T X X be a self mapping satisfying the following condition 

(1) given 0 , there exists a (0, )   such that for all ,x y X   

( , , )     ( , , )m x y t M Tx Ty t           

where 
( , , ) ( , , )

( , , ) min ( , , ), ( , , ), ( , , ), ( , , 2 ), ( , , ),
( , , )

M x Tx t M y Ty t
m x y t M x y t M x Tx t M y Ty t M x Ty t M y Tx t

M x y t

 
  

 
  

Then T has a unique fixed point. 

Proof. Let 0x X  be an arbitrary point. Consider the sequence 0{ } { }n
nx T x . We will prove that { }nx  is a Cauchy 

sequence in X. Let 1( , , )n n nM M x x t , t>0. 

If for some n, 1nM   than 1( , , ) 1n n nM M x x t   implies that 1n n nx x Tx   so T has a fixed point. 

Now suppose that 1nM  for all n. 

If ( , , ) 1m x y t   for some ,x y X  we have that ( , , ) 1M x Tx t   and x Tx  . Hence x is a fixed point for T. 

If ( , , ) 1m x y t   for all ,x y X  than by (1) we have ( , , ) ( , , )m x y t M Tx Ty t  . (2) 

 For any n N   

1 1 1( , , ) ( , , ) ( , , )n n n n n n nM M x x t M Tx Tx t m x x t      

=

1 1 1 1

1 1
1

1

( , , ), ( , , ), ( , , ), ( , , 2 ),

min ( , , ) ( , , )
( , , ),

( , , )

n n n n n n n n

n n n n
n n

n n

M x x t M x Tx t M x Tx t M x Tx t

M x Tx t M x Tx t
M x Tx t

M x x t

   

 




 
 
 
 
 

  =   

1 1 1 1 1

1 1

1

( , , ), ( , , ), ( , , ), ( , , 2 ),

min ( , , ) ( , , )
( , , ),

( , , )

n n n n n n n n

n n n n
n n

n n

M x x t M x x t M x x t M x x t

M x x t M x x t
M x x t

M x x t

    

 



 
 
 
 
 

  = 

  1 1 1 1 1min ( , , ), ( , , ), ( , , 2 ), ( , , )n n n n n n n nM x x t M x x t M x x t M x x t       

Since 1 1 1 1( , , ) ( , , ) ( , , 2 )n n n n n nM x x t M x x t M x x t     than  

1 1( , , ) ( , , )n n n n nM M x x t m x x t      1 1 1 1min ( , , ), ( , , ), ( , , 2 ))n n n n n nM x x t M x x t M x x t    > 

  1 1 1 1min ( , , ), ( , , ), ( , , ) ( , , )n n n n n n n nM x x t M x x t M x x t M x x t    = 1 1min{ ( , , ), ( , , )}n n n nM x x t M x x t  = 

 1min{ , }n nM M = 1nM   .    (2) 

Thus the sequence  nM  is strictly increasing. Since   [0,1]nM   then  nM  converges to some [0,1]s  , 

where  sup ns M . 

If 1s   than exists 0  and m N such that for n m , 1 1( , , )n n ns M M x x t s      . By the condition (1) 

and (2) , we have   
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1 1 1( , ) ( , , )n n n n ns M m x x s     M Tx Tx t s           

But 1 1( , , ) ( , , )n n n n nM Tx Tx t M x x t M s    , that is a contradiction. So 11 lim ( , , )n n
n

s M x x t


  . 

For k N , 1 1 2 1( , , ) ( , , ) ( , , )... ( , , )n n k n n n n n k n k

t t t
M x x t M x x M x x M x x

k k k
         and   

lim ( , , ) 1n n k
n

M x x t


 . So the sequence  nx  is Cauchy sequence in ( , , )X M  .  

By completeness of space ( , , )X M  , there exists u X  such that { }nx  converges to u and lim ( , , ) 1n
n

M x u t


  .  

We will show that u  is the fixed point of T i.e. ( , , ) 1M u Tu t  .  

( , , ), ( , , ), ( , , ), ( , , 2 ),

( , , ) ( , ) min ( , , ) ( , , )
( , , ),

( , , )

n n n n

n n n n
n

n

M x u t M x Tx t M Tu u t M x Tu t

M Tx Tu t m x u M x Tx t M Tu u t
M Tx u t

M x u t

 
 

   
 
 

   

Taking the limit as n , we have ( , , ) ( , , )M u Tu t M u Tu t  , a contradiction. Therefore ( , , ) 1M u Tu t   and 

u Tu .   

To show the uniqueness, we assume that z is another fixed point of T. If ( , , ) 1M z u t  , from (2) it follows that 

( , , ) ( , , ) ( , , )M z u t M Tz Tu t m z u t   = 

( , , ), ( , , ), ( , , ), ( , , 2 ),

min ( , , ) ( , , )
( , , ),

( , , )

M z u t M z Tz t M Tu u t M z Tu t

M z Tz t M Tu u t
M Tz u t

M z u t

 
 
 
 
 

 

=

( , , ), ( , , ), ( , , ), ( , , 2 ),

min ( , , ) ( , , )
( , , ),

( , , )

M z u t M z Tz t M Tu u t M z Tu t

M z Tz t M Tu u t
M Tz u t

M z u t

 
 
 
 
 

 = ( , , )M z u t    

which is a contradiction. Then ( , , ) 1M z u t   and z u . This proves the uniqueness of the fixed point and completes the 

proof of the theorem. 

Remark 3.9. The mapping in theorem is not necessary to be continuous. 
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