ON CERTAIN TOPOLOGICAL INDICES OF BENZENOID COMPOUNDS
DOI:
https://doi.org/10.24297/jac.v13i8.5747Keywords:
Topological indices, molecular graph, pyrene, wiener index, gutman index, zagreb index, structure-property, structure-activityAbstract
Drug discovery is mainly the result of chance discovery and massive screening of large corporate libraries of synthesized or naturally-occurring compounds. Computer aided drug design is an approach to rational drug design made possible by the recent advances in computational chemistry in various fields of chemistry, such as molecular graphics, molecular mechanics, quantum chemistry, molecular dynamics, library searching, prediction of physical, chemical, and biological properties. The structure of a chemical compound can be represented by a graph whose vertex and edge specify the atom and bonds respectively. Topological indices are designed basically by transforming a molecular graph into a number. A topological index is a numeric quantity of a molecule that is mathematically derived from the structural graph of a molecule. In this paper we compute certain topological indices of pyrene molecular graph. The topological indices are used in quantitative structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR) studies.Â
Downloads
References
2. I. Gutman, selected Properties of the Schultz Molecular Topological Index, J. Chem. Inf. Comput. Sci., 34 (1994) 1087-1089.
3. Estrada, E., Torres, L., Rodrguez, L., and Gutman, I.: An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. A, 37 (1998) 849-855.
4. I. Gutman, S. Klavzar, An algorithm for the calculation of Szeged index of benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. 35 (1995) 1011-1014.
5. M. Randi´c, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609-6615.
6. Dimitrov, D.: On structural properties of trees with minimal atom-bond connectivity index, Discr. Appl. Math.,172 (2014) 28-44.
7. I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Let., 17 (1972) 535-538.
8. M. Ali Malik and M. Imran, On the multiple zagreb indices of TiO2 nanotubes, Acta Chim. Slov.,62 (2015) 973-976.
9. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17-20.
10. M. V. Diudea, (Ed.), QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, (2001).
11. M. Ghorbani, N. Azimi, Iranian Journal of Mathematical Chemistry, 3 (2012) 137-143.
12. A. A. Dobrynin and A. A. Kochetova, Degree Distance of a Graph. A Degree Analogue of the Wiener Index, J. Chem. Inf. Comput. Sci., 34 (1994) 1082-1086.
13. Y. Hu, X. Li,Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randi´c index, MATCH Commun. Math. Comput. Chem., 54 (2) (2005) 425-434.
14. J. Quadras, A. Sajiya Merlin Mahizl, I. Rajasingh, R. Sundara Rajan, Domination in certain chemical graphs, Journal of Mathematical Chemistry, 53 (2015) 207-219.
15. Vukicevic, D. and Furtula, B.: Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (4) (2009) 1369-1376.
16. B. Bollobs, P. Erd¨os, Graphs of extremal weights, Ars Combin., 50 (1998) 225-233.
17. D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci., 38 (1998) 819-822.
18. A. Ilic, M. Ilic, Generalizations of Wiener polarity index and terminal Wiener index, Graphs Comb., 29 (2013) 1403-1416.
19. G. Caporossi, I. Gutman, P. Hansen, L. Pavlovic, Graphs with maximum connectivity index, Comput. Biol. Chem., 27 (2003) 85-90.
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.