In Vitro Thermal Requirements of Some Beauveria sp. Isolates Under Constant Conditions


  • Ana Cristina Fătu Research-Development Institute for Plant Protection Bucharest (Romania)
  • Cristina Maria Lumînare Faculty of Agriculture (University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania)
  • Daniel Nicolae Cojanu Faculty of Biotechnologies (University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania)
  • Mihaela Monica Dinu Faculty of Biotechnologies (University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania)
  • Ana Maria Andrei Research-Development Institute for Plant Protection Bucharest (Romania)



Beauveria, entomopathogenic fungi, thermal tolerance


The thermal tolerance of four isolates of Beauveria bassiana and one isolate of Beauveria pseudobassiana was evaluated in vitro, by measuring the colonial diameters, on PDA medium, at temperatures between 5 and 35 ° C, during 14 days. The data obtained were used to calculate the growth rate of fungal colonies (mm / day), using linear regression. The representation of the values corresponding to the minimum, optimal and maximum temperature for vegetative growth was a curve described by a modified beta (ß) mathematical function. The minimum growth temperature of these isolates varied between 3.4 and 4.5 °C, the optimum temperature varied between 21.8 and 22.9 °C, except for one isolate of which optimal temperature was       26.8 °C, while the maximum temperature was varied for all isolates between 35.0 and 35.7 °C.


Download data is not yet available.


Alves, S.B. (1998). Fungos entomopatogênicos. p. 289-381. In Alves, S.B. (ed.) Controle microbiano de insetos. 2a ed. Fundação de Estudos Agrários Luiz de Queiroz (FEALQ), Piracicaba, São Paulo, Brasil.

Bassanezi, R.B., Amorim, L., Bergamin Filho, A. and Hau, B. (1998). Effects of bean line pattern mosaic virus on the monocyclic components of rust and angular leaf spot of Phaseolus bean at different temperatures. Plant Pathology, 47: 289-298.

Borisade, O.A., Magan, N. (2014). Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinose and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Science and Technology, 24:9, 999-1011, DOI: 10.1080/09583157.2014.909007.

Bugeme, D.M., Maniania, N.K., Knapp, M., Boga, H.I. (2008) Effect of temperature on virulence of Beauveria bassiana and Metarhizium anisopliae isolates to Tetranychus evansi. Exp Appl Acarol.; 46:275–285. doi: 10.1007/s10493-008-9179-1.

Burges, H.D. (1998). Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments. Springer Netherlands, ISBN 978-94-011-4926-6, 131-176, DOI: 10.1007/978-94-011-4926-6.

Ceapoiu, N. (1968). Applied statistical methods in agricultural experiments and statistical, Ed. Agro-Silva, Bucharest, p. 550.

Han, J.O., Naeger, N.L., Hopkins, B.K., Sumerlin, D., Stamets, P.E., Carris, L.M., Sheppard, W.S. (2021). Directed evolution of Metarhizium fungus improves its biocontrol efficacy against Varroa mites in honey bee colonies. Sci Rep 11, 10582 (2021).

Hu, R., Bai, P., Liu, B. Yu, J. (2021). On the virulence of two Beauveria bassiana strains against the fall webworm, Hyphantria cunea (Durry) (Lepidoptera: Erebidae), larvae and their biological properties in relation to different abiotic factors. Egypt J Biol Pest Control 31, 107

Klass, J.I., Blanford, S., Thomas, M.B. (2007). Use of geographic information systems to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agr Forest Entomol., 9: 201-208. 10.1111/j.1461-9563.2007.00336.x.;

Lecuona, R.E., B. Papierok, y G. Riba (1996). Hongos entomopatógenos. p. 35-60. In Lecuona, R.E. (ed.) Microorganismos patógenos empleados en el control microbiano de insectos plaga. Editorial Mariano Mas, Buenos Aires, Argentina.

Lizzy, A., MwamburiMark, D., Laing, M.D., Miller, R.M. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Braz. J. Microbiol., 46 (1),

Mishra, S., Kumar, P., Malik, A. (2015). Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. Journal of parasitic diseases : official organ of the Indian Society for Parasitology, 39(4), 697–704.

Qiu, L., Li, JJ., Li, Z., Wang, J.J.(2019). Production and characterization of biocontrol fertilizer from brewer’s spent grain via solid-state fermentation. Sci Rep 9, 480.

Quesada-Moraga, E., Maranhao, E.A.A., Valverde-García, P., Santiago-Álvarez, C. (2006). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity, Biological Control, Volume 36, Issue 3, Pages 274-287, ISSN 1049-9644,

Rodríguez, M., Gerding, M., France, A. (2009). Selection of entomopathogenic fungi to control Varroa destructor (Acari: Varroidae). Chilean J. Agric. Res. [online], vol.69, n.4, pp.534-540. ISSN 0718-5839.

Shimazu, M. (2004). Effects of temperature on growth of Beauveria bassiana F-263, a strain highly virulent to the Japanese pine sawyer, Monochamus alternatus, especially tolerance to high temperatures, Appl. Entomol. Zool. 39 (3): 469–475;

Yu, J. S., Lee, S.J., Shin, T, Y., Kim, W.J., Kim, J.S. (2020). Enhanced thermotolerance of entomopathogenic Beauveria bassiana and Metarhizium anisopliae JEF-isolates by substrate modification. Int. J. Indust. Entomol. 41(2) 28-35 (2020) ISSN 1598-3579,




How to Cite

Cristina Fătu, A., Maria Lumînare, C., Nicolae Cojanu, D., Monica Dinu, M. ., & Maria Andrei, A. (2021). In Vitro Thermal Requirements of Some Beauveria sp. Isolates Under Constant Conditions. JOURNAL OF ADVANCES IN AGRICULTURE, 12, 70–76.