Mechanised Threshing of Pod Grains used as food and Strategies to Optimise the Technique: A Review

Authors

  • Eric Amoah Asante Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology
  • Joseph Oppong Akowuah Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology
  • Samuel Appah Department of Agricultural Mechanization and Irrigation Technology, University for Development Studies
  • George Obeng-Akrofi 3Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA

DOI:

https://doi.org/10.24297/jaa.v12i.9045

Keywords:

control strategy, seed damage, impact force, physical properties, working principles

Abstract

Pod grains threshing using mechanical devices is essential in understanding the diversities involved in the application of machine–crop parameter combinations towards achieving best quality grain. The integration of pod grains’ physical properties in optimizing product quality which is vital to meet the increasing global requirement is limited. However, with computing and technological advancements into thresher design and evaluation have been found to be capable of meeting these needs which are of interest to researchers. Over the past three–four decades, the applications of the technology in reducing impact force through modification of peg geometry have attracted researchers’ widespread interest and the future looks promising.  This review presents an overview of mechanical thresher development and the applications in the field of pod grain production chain. The role of grain physical properties in threshers design, operations and with force sensors to reveal the mysteries surrounding the causes of grain damage and how they can be minimised are stressed. The current trends and future advances of such studies are also presented.

Downloads

Download data is not yet available.

Author Biographies

Joseph Oppong Akowuah, Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology

Expert in postharvest Engineering

Agricultural and Biosystem Engineering, Senior Lecturer

Samuel Appah, Department of Agricultural Mechanization and Irrigation Technology, University for Development Studies

Crop Protection and Farm Machinery

Department of Agricultural Mechanization and Irrigation Technology

References

Abdi, R. & Jalali, A. (2013). Mathematical model for predicting combine harvester header losses. International Journal of Agriculture and Crop Sciences, 5(5), 549–552.

Akaaimo, D. I. & Raji, A. O. (2006). Some Physical and Engineering Properties of Prosopis Africana Seed. Biosystems Engineering, 95(2), 197–205. doi:10.1016/j.biosystemseng. 2006.06.005.

Allen, C. A. W. & Watts, K. C. (1997). Properties of Cowpeas (var. Minica Beans). J. Agric. Eng. Res., 68, 159–167. doi:10.1006/jaer.1997.0193

Altuntas, E., Ozgoz, E. & Taser, O. F. (2005). Some physical properties of fenugreek (Trigonella foenum-graceum L.) seeds. Journal of Food Engineering, 71, 37–43. doi:10.1016/j.jfoodeng.2004.10.015

Al-Mahasneh, M. A. & Rababah, T. M. (2007). Effect of moisture content on some physical properties of green wheat, Journal of Food Engineering, 79, 1467–1473. doi:10.1016/j.jfoodeng. 2006.04.045.

Altuntas, E. & Yıldız, M. (2007). Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grains. Journal of Food Engineering, 78, 174–183. doi:10.1016/j.jfoodeng. 2005.09.013

Amin, M. N., Hossain, M. A. & Roy, K. C. (2004). Effects of moisture content on some physical properties of lentil seeds. Journal of Food Engineering, 65(1), 85–87. doi:10.1016/j.jfoodeng. 2003.12.006.

Asli-Ardeh, E. & Abbaspour-Gilandeh, Y. (2008). Investigation of the effective factors on threshing loss, damaged grains percent and material other than grain to grain ratio on an auto head feed unit. American J. of Agricultural and Biological Sciences, 3(4), 699–705. doi:10.3844/ajabssp.2008.699.705

Aydin, C. (2007). Some engineering properties of peanut and kernel. Journal of Food Engineering, 79(3), 810–816. doi:10.1016/j.jfoodeng.2006.02.045.

Azadbakht, M., Khoshtaghaza, M. H., Gobadian, B. & Minaei, S. (2012). Mechanical properties of soybean pod as a function of moisture content and energy. Journal of Agricultural Technology, 8(4), 1217-1228.

Balasubramanian, S. & Viswanathan, R. (2010). Influence of moisture content on physical properties of minor millets. J. Food Sci. Technol., 47(3), 279–284. doi:10.1007/s13197-010-0043-z

Bartsch, J. A., Haugh, C. G., Athow, K. L. & Peart, R. M. (1986). Impact damage to soybean seed. Transactions of the ASAE, 29(2), 582-586. doi:10.13031/2013.30193

Baryeh, E. A. & Mangope, B. K. (2002). Some physical properties of QP-38 variety pigeon pea. Journal of Food Engineering, 56: 59–65. doi:10.1016/S0260-8774(02)00148-6

Bruce, D. M., Hobson, R. N, Morgan, C. L. & Child, R. D. (2001). Threshabiliy of shatter-resistant seed pods in oilseed rape. J. Agricultural Eng. Research, 80(4), 343–350. doi:10.1006/jaer.2001.0748.

Cain, D. F. & Holmes, R. G. (1977). Evaluation of soybean seed impact damage. Transactions of the ASAE, 71(8), 1552–1556.

Chandrajith, U. G, Gunathilake, D. M. C. C., Bandara, B. D. M. P. & Swarnasiri, D. P. C. (2016). Effects of combine harvesting on head rice yield and chaff content of long and short grain paddy harvest in Sri Lanka. Procedia Food Science, 6, 242–245. doi:10.1016/j.profoo.2016.02.029.

Coen, T., Saeys, W., Missotten, B., & Baerdemaeker, J. D. (2008). Cruise control on a combine harvester using model-ased predictive control. Biosystems Engineering, 99, 45–47. doi:10.1016/j.biosystemseng. 2007.09.023

Craessaerts, G., Saeys, W., Missotten, B. & De Baerdemaeker, J. (2007). A genetic input selection methodology for identification of the cleaning process on a combine harvester, part I: selection of relevant input variables for identification of the sieve losses. Biosystems Engineering, 98, 166–175. doi:10.1016/j.biosystemseng.2007.07.008.

Dauda, A. (2001). Design construction and Performance evaluation of a manually operated cowpea thresher for small scale farmers in Northern Nigeria. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 32(4), 47–50.

ElMasry, G., Radwan, S., ElAmir, M. & ElGamal, R. (2009). Investigating the effect of moisture content on some properties of peanut by aid of digital image analysis, Food and Bioproducts Processing, 87, 273–281. doi:10.1016/j.fbp.2008.11.004.

Fitzgerald, M. A., Mccouch S. R. & Hall, R. D. (2009). Not just a grain of rice: The quest for quality. Trends in Plant Science, 14, 133–139. doi:10.1016/j.tplants.2008.12.004

Fraser, B. M., Verma, S. S. & Muir, W. E. (1978). Some physical properties of fababeans. Journal of Agricultural Engineering Research, 23, 53–57. doi:10.1016/0021-8634(78)90079-3.

Hossain, M. A., Hoque, M. A., Wohab, M. A., Miah, M. A. M. & Hassan, M. S. (2015). Technical and Economic Performance of Combined Harvester in Farmers’ Field. Bangladesh J. Agril. Res., 40(2), 291–304. doi:10.3329/bjar.v40i2.24569

Huang, C., Duan, L., Liu, Q. & Yang, W. (2013). Development of a Whole-Feeding and Automatic Rice Thresher for Single Plant. Mathematical and Computer Modeling, 58, 684–690. doi:10.1016/j.mcm.2011.10.033.

Irtwange, S. V. (2009). Design, Fabrication and Performance of a Motorized Cowpea Thresher for Nigerian Small-Scale Farmers. African Journal of Agricultural Research, 4(12), 1383– 391.

Isik, E. & Unal, H. (2007). Moisture-dependent physical properties of white speckled red kidney bean grains. Journal of Food Engineering, 82, 209–216. doi:10.1016/j.jfoodeng.2007.02.012.

Kabas, O., Yilmaz, E., Ozmerzi, A. & Akinci, I. (2007). Some physical and nutritional properties of cowpea seed (Vigna sinensis L.). Journal of Food Engineering, 79, 1405–1409. doi:10.1016/j.jfoodeng.2006.04.022.

Karababa, E. & Coskuner, Y. (2013). Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop, Industrial Crops and Products, 42, 440–446. doi:10.1016/j.indcrop. 2012.05.006.

Kinyanjui, P. K, Njoroge, D. M, Makokha, A. O., Christiaens, S., Ndaka, D. S. & Hendrickx, M. (2014). Hydration properties and texture fingerprints of easy-and hard-to-cook bean varieties. Food Science & Nutrition, 3, 39–47. doi:10.1002/fsn3.188

Kumar, A, Mohan D, Patel, R. & Varghese, M. (2002). Development of grain threshers based on ergonomic design criteria. Applied Ergonomics, 33, 503–508. doi: 10.1016/s0003-6870(02)00029-7

Liu, C. & Leonard, J. (1993). Monitoring actual grain loss from an axial flow combine in real time. Computers and Electronics in Agriculture, 9, 231–242. doi:10.1016/0168-1699(93)90041-X

Manes, G. S., Dixit, A., Singh, A., Singh, M. & Singh, B. P. (2015). Comparative Performance Evaluation of Axial Flow and Tangential Axial Flow Threshing System for Basmati Rice (Oryza sativa). Agricultural Research, 4(3), 303–308. doi:10.1007/s40003-015-0169-3.

Maunde, F. A. (2011). Performance Evaluation of Manual Cowpea Thresher. African Journal of Agricultural Research, 6(30), 6412–6415. doi:10.5897/AJAR11.940.

Maunde, F. A. (2014). Development and Evaluation of Motorized Cowpea Thresher. AMA–Agricultural Mechanization in Asia, Africa and Latin America, 45(1), 48–52.

Mesquita, C. M. & Hanna, M. A. (1993). Soybean threshing mechanics: І. Frictional rubbing by flat belt. Trans of the Am. Soc. of Agric. Eng., 36(2), 275–279.

Mesquita, C. M. & Hanna, M. A. (1995). Physical and Mechanical Properties of Soybean Crops. Transactions of the ASAE, 38(6), 1655–1658. doi:10.13031/2013.27991.

Mesquita, C. Hanna, M. A., Costa, N. & Franca Neto, J. (2000). Soybean Threshing by Nylon Cords on Rotating Shafts. J. Agricultural Engineering Research, 77(3), 297–301. doi:10.1006/jaer.2000.0600.

Mishra, P. K, Tripathi, J., Gupta, S., & Variyar, P. S. (2016). Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality. Food chemistry, 215, 401–409. doi:10.1016/j.foodchem.2016.07.149.

Miu, P. I. (1999). Mathematical Modeling of Material Other-than-Grain Separation in Threshing Units. ASAE Paper No. 993208. ASAE, St. Joseph, MI.

Miu, P. I. & Kutzbach, H. D. (2007). Mathematical model of material kinematics in an axial threshing unit. Comput. Electron. Agric., 58, 93–99. doi:10.1016/j.compag. 2007.04.002.

Miu, P. I. & Kutzbach, H. D. (2008b). Modeling and simulation of grain threshing and separation in threshing units – Part I, Comput. Electron. Agric. 60, 96–104. doi:10.1016/j.compag.2007. 07.003.

Miu, P. I. & Kutzbach H. D. (2008a) Modeling and simulation of grain threshing and separation in axial threshing units Part II. Application to tangential feeding. Comput, Electron. Agric., 60, 105–109. vier B.V. All rights reserved. doi:10.1016/j.compag.2007.07.004.

Mohan, D. & Patel, R. (1992). Design of safer agricultural equipment: application of ergonomics and epidemiology. Int. J. Industrial Ergonom, 10(4), 301–309. doi:10.1016/0169-8141(92)90097-J

Murdock, L. L. & Baoua, I. B. (2014). On Purdue Improved Cowpea Storage (PICS) technology: Background, mode of action, future prospects. J. Stored Products Research, 58, 3–11. doi:10.1016/j.jspr.2014.02.006.

Myhan, R. & Jachimczyk, E. (2016). Grain separation in a straw walker unit of a combine harvester: Process model. Biosystems Engineering, 145, 93–107. doi:10.1016/j.biosystemseng. 2016.03.00

Neale, M. A., Hobson, R. N., Price, J. S. & Bruce, D. M. (2003). Effectiveness of Three Types of Grain Separator for Crop Matter harvested with a Stripping Header. Biosystems Engineering, 84(2), 177–191. doi:10.1016/ 150S1537-5110(02)00235-0.

Njoroge, D. M., Kinyanjui, P. K., Christiaens, S., Shpigelman, A., Makokha, A. O, Sila, D. N. & Hendrickx, M. E. (2015). Effect of storage conditions on pectic polysaccharides in common beans (Phaseolus vulgaris) in relation to the hard to-cook defect. Food Research International, 76, 105–113. doi:10.1016/j.foodres.2015.03.005

Ogunjimi, L. A. O., Aviara, N. A. & Aregbesola, O. A. (2002). Some engineering properties of locust bean seed. Journal of Food Engineering, 55(2), 95–99. doi:10.1016/S0260-8774(02)00021-3

Olajide, J. D. & Ade-Omowaye, B. I. O. (1999). Some physical properties of locust bean seed. Journal of Agricultural Engineering Research, 74(2), 213–215. doi:10.1006/jaer.1997.0243.

Omid, M., Lashgari, M., Mobli, H., Alimardani, R., Mohtasebi, S. and Hesamifard, R. (2010). Design of Fuzzy Logic Control System Incorporating Human Expert Knowledge for Combine Harvester. Expert Systems with Applications, 37(10), 7080–7085. doi:10.1016/j.eswa.2010.03.010

Paksoy, M., & Aydin, C. (2004). Some physical properties of edible squash (Cucurbita pepo L.) seeds. J. Food Eng., 65, 225–231. doi:10.1016/j.jfoodeng.2004.01.019.

Paulsen, M. R., Kalita, P. K., & Rausch, K. D. (2015). Postharvest Losses due to Harvesting Operations in Developing Countries: A Review. ASABE Annual International Meeting St. Joseph, MI, USA. 49085-9659, Paper number, 152176663,

Paulsen, M. R., Nave, W. R, & Gray, L. E. (1981). Soybean seed quality as affected by impact damage. Transactions of the ASAE, 24(6): 1577–1582. doi:10.13031/2013.34493

Petkevichius, S., Shpokas, L. & Kutzbach, H. D. (2008). Investigation of the maize ear threshing process. Biosystems Engineering, 99, 532–539. doi:10.1016/j.biosystemseng.2008.01.002.

Razavi, S. M. A., Amini, A. M., Rafe, A. & Emadzadeh, B. (2007). The physical properties of pistachio nut and its kernel as a function of moisture content and variety. Part III: Frictional properties. Journal of Food Engineering, 81, 226–235. doi:10.1016/j.jfoodeng.2006.10.025.

Sacilik, K., Ozturk, R. & Keskin, R. (2003). Some Physical Properties of Hemp Seed, Biosystems Engineering, 86(2), 191–198. doi:10.1016/S1537-5110(03)00130-2.

Saiedirad, M. H., Tabatabaeefar, A., Borghei, A., Mirsalehi, M., Badii, F. & Ghasemi Varnamkhasti M. (2008). Effects of moisture content, seed size, loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum Linn.) under quasi-static loading. Journal of Food Engineering. 86, 565–572. doi:10.1016/j.jfoodeng.2007.11.021.

Sessiz, A. & Ulger, P. (2003). Determination of threshing losses with a raspbar type axial flow threshing unit. J. Agric Eng., 40(4), 1–8.

Sharma, K. D. & Devnani, R. S. (1980). Threshing studies on soybeans and cowpea. Agric. Mech. in Asia, Afr. and Latin Am., 65 – 68.

Siddiq, M, Ravi, R, Harte, J. B. & Dolan, K. D. (2010). Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT – Food Science and Technology, 43(2), 232–237.

Singh, K. K. & Goswami, T. K, (1998). Mechanical properties of cumin seed under compressive loading. Journal of Food Engineering, 36(3), 311–321. doi:10.1016/S0260-8774(98)00056-9

Singh, K. P., Pardeshi, I. L, Kumar, M, Srinivas, K, & Srivastva, A. K. (2008). Optimization of machine parameters of a pedal-operated paddy thresher using RSM. Biosystems Engineering, 100(4), 591–600. doi:10.1016/j.biosystemseng.2008.05.004

Singh, K. N. & Singh, B. (1981). Effect of crop and machine parameters on threshing effectiveness and seed quality of soybean. J. Agricultural Eng. Research, 26(4), 349–355. doi:10.1016/0021-8634(81)90076-7.

Sudajana, S, Salokhea, V. M. & Triratanasirichai, K. (2002.) Effect of Type of Drum, Drum Speed and Feed Rate on Sunflower Threshing. Biosystems Engineering, 83(4), 413–421. doi:10.1006/ bioe.2002.0133.

Ukatu, A. C. (2006). A Modified Threshing Unit for Soybeans. Biosystems Engineering, 95 (3), 371–377. Biosystems Engineering, 95(3), 371–377. doi:10.1016/j.biosystemseng.2006.06.014.

Unal, H., Isık, E. & Alpsoy, H. C. (2006). Some physical and mechanical properties of black-eyed pea (Vigna unguiculata L.), grains. Pakistan Journal of Biological Sciences, 9(9):1799–1806. doi:10.3923/pjbs.2006. 1799. 1806.

Veerangouda, M, Prakash, S, Sushilendra, K. V. & Anantachar, M. (2010). Performance evaluation of tractor operated combine harvester. Karnataka Journal of Agriculture Sciences, 23(2), 282–285.

Vejasit, A. & Salokhe, V. (2004). Studies on Machine-Crop Parameters of an Axial Flow Thresher for Threshing Soybean. Agriculture Engineering International: the GIGR Journal of Scientific Research and Development. 6, 1-12.

Xu, L., Li, Y., Ma, Z., Zhao, Z. & Wang, C. (2013). Theoretical analysis and finite element simulation of a rice kernel obliquely impacted by a threshing tooth. Biosystems Engineering, 114, 146–156. doi:10.1016/j. biosystemseng.2012.11.006.

Yalcın, I. (2007). Physical properties of cowpea (Vigna sinensis L.) seed. Journal of Food Engineering, 79, 57–62. doi:10.1016/j.jfoodeng.2006.01.026.

Yi, J., Njoroge, D. M., Sila, D. N., Kinyanjui, P. K., Christiaens S., Bi J. & Hendrickx, M. E. (2016). Detailed analysis of seed coat and cotyledon reveals molecular understanding of the hard-to-cook defect of common beans (Phaseolus vulgaris L.). Food chemistry, 210, 481–490. doi:10.1016/j.foodchem.2016.05.018

Yu, Y., Fu, H. & Yu, J. (2015). DEM-based simulation of the corn threshing process. Advanced Power Technology. 1400–1409. doi:10.1016/j.apt.2015.07.015.

Zhang, X., Alim, M. A., Lin, Z., Liu, Z., Li G., Wang, Q., Wang, S. & Ding, Y. (2014). Analysis of Variations in White-Belly and White-Core Rice Kernels within a Panicle and the Effect of Panicle Type. Journal of Integrative Agriculture, 13(8), 1672–1679. doi:10.1016/S2095-3119(13)605 93-6.

Zhao, Z., Li, Y., Chen, J. & Xu, J. (2011). Grain separation loss monitoring system in combine harvester. Comput. Electron. in Agric., 76, 183–188. doi:10.1016/j.compag. 2011.01.016.

Downloads

Published

2021-06-22

How to Cite

Asante, E. A. ., Akowuah, J. O., Appah, S., & Obeng-Akrofi, G. (2021). Mechanised Threshing of Pod Grains used as food and Strategies to Optimise the Technique: A Review. JOURNAL OF ADVANCES IN AGRICULTURE, 12, 31–43. https://doi.org/10.24297/jaa.v12i.9045

Issue

Section

Articles

Most read articles by the same author(s)