A Mathematical Graph-Theoretic Model of Single Point Mutations Associated with Sickle Cell Anemia Disease
DOI:
https://doi.org/10.24297/jbt.v9i.9109Keywords:
Anemia–sickle cell disease (SCD), beta-globin (β-globin), hemoglobin protein (1A3N), mathematical graph-theoretic model (nested graph), mutation GLU6VAL (E6V), homozygous HbSS, unsupervised machine learning (hierarchical clustering)Abstract
Many diseases like cystic fibrosis and sickle cell anemia disease (SCD), among others, arise from single point mutations in the respective proteins. How a single point mutation might lead to a global devastating consequence on a protein remains an intellectual mystery. SCD is a genetic blood-related disorder resulting from mutations in the beta chain of the human hemoglobin protein (simply, β-globin), subsequently affecting the entire human body. Higher mortality and morbidity rates have been reported for patients with SCD, especially in sub-Saharan Africa. Clinical management of SCD often requires specialized interdisciplinary clinicians. SCD presents a major global burden, hence an improved understanding of how single point mutations in β-globin results in different phenotypes of SCD might offer insight into protein engineering, with potential therapeutic intervention in view. By use of mathematical modeling, we built a hierarchical (nested) graph-theoretic model for the β-globin. Subsequently, we quantified the network of interacting amino acid residues, representing them as molecular system of three distinct stages (levels) of interactions. Using our nested graph model, we studied the effect of virtual single point mutations in β-globin that results in varying phenotypes of SCD, visualized by unsupervised machine learning algorithm, the dendrogram.
Downloads
References
Abou-Sleiman, P. M., Healy, D. G., & Wood, N. W. (2004). Causes of Parkinson’s disease: Genetics of DJ-1. In Cell and Tissue Research. https://doi.org/10.1007/s00441-004-0922-6
Ayyadevara, S., Balasubramaniam, M., Kakraba, S., Alla, R., Mehta, J. L., & Shmookler Reis, R. J. (2017). Aspirin-Mediated Acetylation Protects Against Multiple Neurodegenerative Pathologies by Impeding Protein Aggregation. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2016.6978
Balasubramaniam, M., Ayyadevara, S., Ganne, A., Kakraba, S., Penthala, N. R., Du, X., Crooks, P. A., Griffin, S. T., & Shmookler Reis, R. J. (2019). Aggregate Interactome Based on Protein Cross-linking Interfaces Predicts Drug Targets to Limit Aggregation in Neurodegenerative Diseases. IScience, 20, 248–264. https://doi.org/10.1016/j.isci.2019.09.026
Chakravorty, S., & Williams, T. N. (2015). Sickle cell disease: A neglected chronic disease of increasing global health importance. Archives of Disease in Childhood. https://doi.org/10.1136/archdischild-2013-303773
Chernoff, A. I., Minnich, V., & Chongchareonsuk, S. (1954). Hemoglobin E, a Hereditary Abnormality of Human Hemoglobin. https://doi.org/10.1126/science.120.3120.605
Cohen, S. I. A., & Mahadevan, L. (2013). Hydrodynamics of hemostasis in sickle-cell disease. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.110.138104
Cooper, G. M., & Hausman, R. E. (2007). The Cell: A Molecular Approach 2nd Edition. In Sinauer Associates.
Da Guarda, C. C., Yahouédéhou, S. C. M. A., Santiago, R. P., Dos Santos Neres, J. S., De Lima Fernandes, C. F., Aleluia, M. M., Figueiredo, C. V. B., Fiuza, L. M., Carvalho, S. P., De Oliveira, R. M., Fonseca, C. A., Ndidi, U. S., Nascimento, V. M. L., Rocha, L. C., & Goncalves, M. S. (2020). Sickle cell disease: A distinction of two most frequent genotypes (HbSS and HbSC). PLoS ONE. https://doi.org/10.1371/journal.pone.0228408
Erer, S., Egeli, U., Zarifoglu, M., Tezcan, G., Cecener, G., Tunca, B., Ak, S., Demirdogen, E., Kenangil, G., Kaleagası, H., Dogu, O., Saka, E., & Elibol, B. (2016). Mutation analysis of the PARKIN, PINK1, DJ1, and SNCA genes in Turkish early-onset Parkinson’s patients and genotype-phenotype correlations. Clinical Neurology and Neurosurgery. https://doi.org/10.1016/j.clineuro.2016.07.005
Gardner, R. V. (2018). Sickle cell disease: Advances in treatment. In Ochsner Journal. https://doi.org/10.31486/toj.18.0076
Griffiths, a. J. F., Gelbart, W. M., Lewontin, R. C., & Miller, J. H. (2002). Modern Genetic Analysis. Https://Www.Ncbi.Nlm.Nih.Gov/Books/NBK21417/.
Hartl, D. L., & Ruvolo, M. (2012). Genetics: Analysis Of Genes And Genomes (8th ed.). Jones & Bartlett Learning.
Kakraba, S. (2015). A Hierarchical Graph for Nucleotide Binding Domain 2.
Kakraba, S., Ayyadevara, S., Penthala, N. R., Balasubramaniam, M., Ganne, A., Liu, L., Alla, R., Bommagani, S. B., Barger, S. W., Griffin, W. S. T., Crooks, P. A., & Shmookler Reis, R. J. (2019). A Novel Microtubule-Binding Drug Attenuates and Reverses Protein Aggregation in Animal Models of Alzheimer’s Disease. Frontiers in Molecular Neuroscience. https://doi.org/10.3389/fnmol.2019.00310
Kakraba, S., & Knisley, D. (2016). A graph-theoretic model of single point mutations in the cystic fibrosis transmembrane conductance regulator. JOURNAL OF ADVANCES IN BIOTECHNOLOGY, 6(1), 780–786. https://doi.org/10.24297/jbt.v6i1.4013
Kanter, J., & Kruse-Jarres, R. (2013). Management of sickle cell disease from childhood through adulthood. Blood Reviews. https://doi.org/10.1016/j.blre.2013.09.001
Kim, H. C. (2014). Red cell exchange: Special focus on sickle cell disease. Hematology. https://doi.org/10.1182/asheducation-2014.1.450
Knisley, D. J., Knisley, J. R., & Herron, A. C. (2013). Graph-Theoretic Models of Mutations in the Nucleotide Binding Domain 1 of the Cystic Fibrosis Transmembrane Conductance Regulator. Computational Biology Journal, 2013, 938169. https://doi.org/10.1155/2013/938169
Kyrtsos, C. R., & Baras, J. S. (2012). A graph-theoretic mathematical model for Alzheimer’s disease: Using a systems biology approach. IEEE 12th International Conference on BioInformatics and BioEngineering, BIBE 2012. https://doi.org/10.1109/BIBE.2012.6399723
Naghavi, M., Wang, H., Lozano, R., Davis, A., Liang, X., Zhou, M., Vollset, S. E., Abbasoglu Ozgoren, A., Abdalla, S., Abd-Allah, F., Abdel Aziz, M. I., Abera, S. F., Aboyans, V., Abraham, B., Abraham, J. P., Abuabara, K. E., Abubakar, I., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., … Temesgen, A. M. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet. https://doi.org/10.1016/S0140-6736(14)61682-2
Neumayr, L. D., Hoppe, C. C., & Brown, C. (2019). Sickle cell disease: current treatment and emerging therapies. The American Journal of Managed Care.
Ni, C., Sugimoto, C. R., & Jiang, J. (2011). Degree, Closeness, and Betweenness: Application of group centrality measurements to explore macro-disciplinary evolution diachronically. Proceedings of ISSI 2011 - 13th Conference of the International Society for Scientometrics and Informetrics.
Nuytemans, K., Theuns, J., Cruts, M., & Van Broeckhoven, C. (2010). Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. In Human Mutation. https://doi.org/10.1002/humu.21277
Oksenberg, D., Dufu, K., Patel, M. P., Chuang, C., Li, Z., Xu, Q., Silva-Garcia, A., Zhou, C., Hutchaleelaha, A., Patskovska, L., Patskovsky, Y., Almo, S. C., Sinha, U., Metcalf, B. W., & Archer, D. R. (2016). GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. British Journal of Haematology. https://doi.org/10.1111/bjh.14214
Parrow, N. L., Tu, H., Nichols, J., Violet, P. C., Pittman, C. A., Fitzhugh, C., Fleming, R. E., Mohandas, N., Tisdale, J. F., & Levine, M. (2017). Measurements of red cell deformability and hydration reflect HbF and HbA2 in blood from patients with sickle cell anemia. Blood Cells, Molecules, and Diseases. https://doi.org/10.1016/j.bcmd.2017.04.005
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A Visualization System for Exploratory Research and Analysis. Computational Chemistry.
Quinn, C. T. (2018). L-Glutamine for sickle cell anemia: More questions than answers. In Blood. https://doi.org/10.1182/blood-2018-03-834440
R Core Team. (2014). R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Http://Www.R-Project.Org/.
Salinas Cisneros, G., & Thein, S. L. (2020). Recent Advances in the Treatment of Sickle Cell Disease. Frontiers in Physiology, 11(May), 1–15. https://doi.org/10.3389/fphys.2020.00435
Segal, J. B., Strouse, J. J., Beach, M. C., Haywood, C., Witkop, C., Park, H., Wilson, R. F., Bass, E. B., & Lanzkron, S. (2008). Hydroxyurea for the treatment of sickle cell disease. In Evidence report/technology assessment.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
Steinberg, M. H., Barton, F., Castro, O., Pegelow, C. H., Ballas, S. K., Kutlar, A., Orringer, E., Bellevue, R., Olivieri, N., Eckman, J., Varma, M., Ramirez, G., Adler, B., Smith, W., Carlos, T., Ataga, K., DeCastro, L., Bigelow, C., Saunthararajah, Y., … Terrin, M. (2003). Effect of Hydroxyurea on Mortality and Morbidity in Adult Sickle Cell Anemia: Risks and Benefits Up to 9 Years of Treatment. Journal of the American Medical Association. https://doi.org/10.1001/jama.289.13.1645
Strouse, J. J., Lanzkron, S., Beach, M. C., Haywood, C., Park, H., Witkop, C., Wilson, R. F., Bass, E. B., & Segal, J. B. (2008). Hydroxyurea for sickle cell disease: A systematic review for efficacy and toxicity in children. Pediatrics. https://doi.org/10.1542/peds.2008-0441
Tame, J. R., & Vallone, B. (2000). The structures of deoxy human haemoglobin and the mutant Hb Tyralpha42His at 120 K. Acta Crystallographica. Section D, Biological Crystallography, 56(Pt 7), 805–811. https://doi.org/10.1107/s0907444900006387
The Protein Data Bank. (1998). https://doi.org/10.2210/pdb1A3N/pdb
Thom, C. S., Dickson, C. F., Gell, D. A., & Weiss, M. J. (2013). Hemoglobin variants: Biochemical properties and clinical correlates. Cold Spring Harbor Perspectives in Medicine. https://doi.org/10.1101/cshperspect.a011858
Wastnedge, E., Waters, D., Patel, S., Morrison, K., Goh, M. Y., Adeloye, D., & Rudan, I. (2018). The global burden of sickle cell disease in children under five years of age: A systematic review and meta-analysis. Journal of Global Health. https://doi.org/10.7189/jogh.08.021103
Yagishita, N., Yamasaki, S., Nishioka, K., & Nakajima, T. (2008). Synoviolin, protein folding and the maintenance of joint homeostasis. In Nature Clinical Practice Rheumatology. https://doi.org/10.1038/ncprheum0699
Zhang, Y. (2007a). Prediction Report Template-based modeling and free modeling by I-TASSER in CASP7. Proteins. https://doi.org/10.1002/prot
Zhang, Y. (2007b). Template-based modeling and free modeling by I-TASSER in CASP7. Proteins: Structure, Function and Genetics. https://doi.org/10.1002/prot.21702
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mr. Edem K. Netsey, Dr. samuel kakraba, Dr. Samuel M. Naandam, Mr. Aayire Clement Yadem
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.