Therapeutic effectiveness of Hydroxyapatite Nanoparticles and Pulsed Electromagnetic Field in Osteoporosis and Cancer

Authors

DOI:

https://doi.org/10.24297/jbt.v8i0.8128

Keywords:

Osteoporosis, Cancer, Hydroxyapatite Nanoparticles, Pulsed Electromagnetic Field

Abstract

The emergence of nanotechnology has had a profound effect on many areas of healthcare and scientific research. Several studies reported the importance Hydroxyapetite Nanoparticles in the biomedical field in general, and in emerging areas such as implants, drug delivery, cancer, composites, coatings, and ceramic materials in particular. On the other hand, low level Pulsed electromagnetic field (PEMF) therapy presents several potential advantages including non-invasiveness, safety, highly influential in the fracture repair process, lack of toxicity for non-cancerous cells, and the possibility of being combined with other available therapies. It has also been observed that the combined effect of these two can accelerate the osteognic and anticancer activity in the osteoporotic and carcinoma cell lines respectively. The objective of this review is to provide a broad recount of the applications of PEMFs and Hydroxyapatite nanoparticles in osteoporosis and cancer and to then demonstrate what is further required for enhanced therapeutic outcomes.

Downloads

Download data is not yet available.

Author Biographies

Divya Prakash, Pennsylvania State University, USA

Assistant Research Professor,
Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA

Shikha S Chauhan, Pennsylvania State University

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, USA

Jitendra Behari, Amity University

Amity Institute for Environmental Toxicology, Amity University, Uttar Pradesh, India

References

De Jong WH, Borm PJ: Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine 2008, 3(2):133.

Maia ALC, Cavalcante CH, de Souza MG, Ferreira CdA, Rubello D, Chondrogiannis S, Cardoso VN, Ramaldes GA, de Barros AL, Soares DC: Hydroxyapatite nanoparticles: preparation, characterization, and evaluation of their potential use in bone targeting: an animal study. Nuclear medicine communications 2016, 37(7):775-782.

Singh DK, Krotkov RV, Xiang H, Xu T, Russell TP, Tuominen MT: Arrays of ultrasmall metal rings. Nanotechnology 2008, 19(24):245305.

Jafari S, Adibkia K: Application of hydroxyapatite nanoparticle in the drug delivery systems. J Mol Pharm Org Process Res 2015, 3:1-2.

Haider A, Haider S, Han SS, Kang I-K: Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. Rsc Advances 2017, 7(13):7442-7458.

Koutsopoulos S: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2002, 62(4):600-612.

Haider A, Gupta KC, Kang I-K: PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration. Nanoscale research letters 2014, 9(1):314.

Cao H, Zhang L, Zheng H, Wang Z: Hydroxyapatite nanocrystals for biomedical applications. The Journal of Physical Chemistry C 2010, 114(43):18352-18357.

Cummings LJ, Snyder MA, Brisack K: Protein chromatography on hydroxyapatite columns. In: Methods in enzymology. vol. 463: Elsevier; 2009: 387-404.

KAWASAKI T, TAKAHASHI S, IDEDA K: Hydroxyapatite high?performance liquid chromatography: column performance for proteins. European journal of biochemistry 1985, 152(2):361-371.

Zhang S: Hydroxyapatite coatings for biomedical applications: CRC press; 2013.

Chen X, Wang Q, Shen J, Pan H, Wu T: Adsorption of Leucine-Rich Amelogenin Protein on Hydroxyapatite (001) Surface through? COO-Claws. The Journal of Physical Chemistry C 2007, 111(3):1284-1290.

Shaw WJ, Campbell AA, Paine ML, Snead ML: The C-terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. Journal of Biological Chemistry 2004.

Balasundaram G, Fleet J, Weaver C, Friedman A, Weatherman R, Webster T: Nanomaterials for osteoporosis treatment. In: Bioengineering Conference, 2005 Proceedings of the IEEE 31st Annual Northeast: 2005. IEEE: 170-171.

Balasundaram G, Sato M, Webster TJ: Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 2006, 27(14):2798-2805 %U https://linkinghub.elsevier.com/retrieve/pii/S0142961205011634.

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

Weiner S, Wagner HD: THE MATERIAL BONE: Structure-Mechanical Function Relations. Annual Review of Materials Science 1998, 28(1):271-298 %U http://www.annualreviews.org/doi/210.1146/annurev.matsci.1128.1141.1271.

Mann S: Biomineralization: principles and concepts in bioinorganic materials chemistry, vol. 5: Oxford University Press on Demand; 2001.

Tang R, Wang L, Orme CA, Bonstein T, Bush PJ, Nancollas GH: Dissolution at the Nanoscale: Self-Preservation of Biominerals. Angewandte Chemie International Edition 2004, 43(20):2697-2701 %U http://doi.wiley.com/2610.1002/anie.200353652.

Alivisatos AP: BIOMINERALIZATION: Enhanced: Naturally Aligned Nanocrystals. Science 2000, 289(5480):736-737 %U http://www.sciencemag.org/cgi/doi/710.1126/science.1289.5480.1736.

Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R: Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporosis International 2005, 16(12):2031-2038 %U http://link.springer.com/2010.1007/s00198-00005-01992-00193.

Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condò SG: Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomolecular Engineering 2002, 19(2-6):119-124 %U http://linkinghub.elsevier.com/retrieve/pii/S1389034402000278.

Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S, Nagayama M: Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials 2004, 25(7-8):1159-1166 %U http://linkinghub.elsevier.com/retrieve/pii/S0142961203006550.

Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, Kumta PN, Sfeir C: Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials 2007, 28(6):1267-1279 %U https://linkinghub.elsevier.com/retrieve/pii/S0142961206009276.

Kalita SJ, Bhardwaj A, Bhatt HA: Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering: C 2007, 27(3):441-449 %U https://linkinghub.elsevier.com/retrieve/pii/S0928493106001469.

Al?Qasas NS, Rohani S: Synthesis of Pure Hydroxyapatite and the Effect of Synthesis Conditions on its Yield, Crystallinity, Morphology and Mean Particle Size. Separation Science and Technology 2005, 40(15):3187-3224 %U http://www.tandfonline.com/doi/abs/3110.1080/01496390500385400.

Xiao F, Ye J, Wang Y, Rao P: Deagglomeration of HA during the precipitation synthesis. Journal of Materials Science 2005, 40(20):5439-5442 %U http://link.springer.com/5410.1007/s10853-10005-11919-10856.

Curtis A: Tutorial on the Biology of Nanotopography. IEEE Transactions on Nanobioscience 2004, 3(4):293-295 %U http://ieeexplore.ieee.org/document/1363988/.

Curtis ASG, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CDW, Aitchison G: Cells React to Nanoscale Order and Symmetry in Their Surroundings. IEEE Transactions on Nanobioscience 2004, 3(1):61-65 %U http://ieeexplore.ieee.org/document/1273510/.

Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shi Z, Tang R: Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry 2007, 17(36):3780 %U http://xlink.rsc.org/?DOI=b705129h.

Prakash D, Behari J: Synergistic role of Hydroxyapatite Nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposed to simulated microgravity. In: Recent Advances in Microwave Theory and Applications: 2008. IEEE: 572-573.

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

Prakash D, Behari J: Synergistic role of hydroxyapatite nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposure to simulated microgravity. Int J Nanomedicine 2009, 4:133-144.

Wassell DTH, Hall RC, Embery G: Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials 1995, 16(9):697-702 %U http://linkinghub.elsevier.com/retrieve/pii/014296129599697K.

Rouahi M, Champion E, Gallet O, Jada A, Anselme K: Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids and surfaces B: Biointerfaces 2006, 47(1):10-19.

Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, Ziche M: The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 76(3):656-663.

Wahl D, Czernuszka J: Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006, 11:43-56.

Queiroz A, Santos J, Monteiro F: Development of a system to adsorb drugs onto calcium phosphate materials. Journal of Materials Science: Materials in Medicine 2005, 16(7):641-646.

Moroni A, Pegreffi F, Cadossi M, Hoang-Kim A, Lio V, Giannini S: Hydroxyapatite-coated external fixation pins. Expert review of medical devices 2005, 2(4):465-471.

Fu Q, Zhou N, Huang W, Wang D, Zhang L, Li H: Effects of nano HAP on biological and structural properties of glass bone cement. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2005, 74(2):156-163.

Uskokovic V: Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Critical Reviews™ in Therapeutic Drug Carrier Systems 2015, 32(1).

Liu Z-S, Tang S-L, Ai Z-L: Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World journal of gastroenterology 2003, 9(9):1968.

Liu Z, Tang S, Ai Z, Hu J: Growth inhibition of human hepatoma and colon carcinoma cell line treated with hydroxyapatite nanoparticles. Chin J Exp Surg 2006, 23:266.

Ho Pk, Hawkins CJ: Mammalian initiator apoptotic caspases. The FEBS journal 2005, 272(21):5436-5453.

Compton MM: A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer and Metastasis Reviews 1992, 11(2):105-119.

Schafer ZT, Kornbluth S: The apoptosome: physiological, developmental, and pathological modes of regulation. Developmental cell 2006, 10(5):549-561.

Chen X, Deng C, Tang S, Zhang M: Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biological and Pharmaceutical Bulletin 2007, 30(1):128-132.

Bauer IW, Li S-P, Han Y-C, Yuan L, Yin M-Z: Internalization of hydroxyapatite nanoparticles in liver cancer cells. Journal of Materials Science: Materials in Medicine 2008, 19(3):1091-1095.

Zuhorn IS, Visser WH, Bakowsky U, Engberts JB, Hoekstra D: Interference of serum with lipoplex–cell interaction: modulation of intracellular processing. Biochimica et Biophysica Acta (BBA)-Biomembranes 2002, 1560(1-2):25-36.

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

Rejman J, Oberle V, Zuhorn IS, Hoekstra D: Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical Journal 2004, 377(1):159-169.

Iannitti T, Fistetto G, Esposito A, Rottigni V, Palmieri B: Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly. Clinical interventions in aging 2013, 8:1289.

Vadalà M, Vallelunga A, Palmieri L, Palmieri B, Morales-Medina JC, Iannitti T: Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behavioral and Brain Functions 2015, 11(1):26.

Strauch B, Herman C, Dabb R, Ignarro LJ, Pilla AA: Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthetic Surgery Journal 2009, 29(2):135-143.

Andrew C, Bassett L, Pawluk RJ, Pilla AA: Augmentation of Bone Repair by Inductively Coupled Electromagnetic Fields. Science 1974, 184(4136):575-577 %U http://www.sciencemag.org/cgi/doi/510.1126/science.1184.4136.1575.

Bassett L, Tzitzikalakis G, Pawluk R, Bassett C: Prevention of disuse osteoporosis in the rat by means of pulsing electromagnetic fields. In: Electrical properties of bone and cartilage. Grune & Stratton, New York; 1979: 311-332.

Cruess R, Kan K, Bassett C: The effect of pulsing electromagnetic fields on bone metabolism in experimental disuse osteoporosis. Clinical Orthopaedics and Related Research® 1983, 173:245-250.

Funk RH, Monsees T, Özkucur N: Electromagnetic effects–From cell biology to medicine. Progress in histochemistry and cytochemistry 2009, 43(4):177-264.

Scott G, King JB: A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. The Journal of Bone & Joint Surgery 1994, 76(6):820-826 %U https://insights.ovid.com/crossref?an=00004623-199406000-199400005.

Behari J, Arya V, Alex Z: Bone Fracture Healing using a Capacitatively Coupled Rffield. Journal of Bioelectricity 1991, 10(1-2):231-239.

Manjhi J, Mathur R, Behari J: Effect of low level capacitive-coupled pulsed electric field stimulation on mineral profile of weight-bearing bones in ovariectomized rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010, 92B(1):189-195 %U http://doi.wiley.com/110.1002/jbm.b.31505.

Behari J, Behari J: Changes in bone histology due to capacitive electric field stimulation of ovariectomized rat. Indian Journal of Medical Research 2009, 130(6).

Behari J, Lochan R: Effects of low level pulsed radio frequency fields on induced osteoporosis in rat bone. 2003.

Skerry TM, Pead MJ, Lanyon LE: Modulation of bone loss during disuse by pulsed electromagnetic fields. Journal of Orthopaedic Research 1991, 9(4):600-608 %U http://doi.wiley.com/610.1002/jor.1100090417.

McLeod KJ, Rubin CT: The effect of low-frequency electrical fields on osteogenesis. The Journal of Bone & Joint Surgery 1992, 74(6):920-929 %U http://Insights.ovid.com/crossref?an=00004623-199274060-199200014.

Simske SJ, Wachtel H, Luttges MW: Effect of localized pulsed electromagnetic fields on tail-suspension osteopenia in growing mice. Bioelectromagnetics 1991, 12(2):101-116 %U http://doi.wiley.com/110.1002/bem.2250120205.

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

Mishima S: The Effect of Long-Term Pulsing Electromagnetic Field Stimulation on Experimental Osteoporosis of Rats. Journal of UOEH 1988, 10(1):31-45 %U https://www.jstage.jst.go.jp/article/juoeh/10/31/10_KJ00002505206/_article.

Takayama K, Nomura H, Tanaka J-i, Zborowski M, Harasaki H, Jacobs GB, Malchesky P, Licata AA, NosÉ Y: Effect of a pulsing electromagnetic field on metabolically derived osteoporosis in rats: a pilot study. ASAIO transactions 1990, 36(3):M426-428.

Zati A, Gnudi S, Mongiorgi R, Giardino R, Fini M, Valdre G, Galliani I, Montagnani A: Effects of pulsed magnetic fields in the therapy of osteoporosis induced by ovariectomy in the rat. Bollettino della Societa italiana di biologia sperimentale 1993, 69(7-8):469-475.

Sert C, Denz M, Düz MZ, Ak?en F, Kaya A: The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rats. Journal of Bone and Mineral Metabolism 2002, 20(6):345-349 %U http://link.springer.com/310.1007/s007740200050.

Chang K, Chang WH-S: Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: A prostaglandin E2-associated process. Bioelectromagnetics 2003, 24(3):189-198 %U http://doi.wiley.com/110.1002/bem.10078.

Tabrah FL, Ross P, Hoffmeier M, Gilbert Jr F: Clinical report on long?term bone density after short?term EMF application. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 1998, 19(2):75-78.

Garland DE, Adkins RH, Matsuno NN, Stewart CA: The Effect of Pulsed Electromagnetic Fields on Osteoporosis at the Knee in Individuals with Spinal Cord Injury. The Journal of Spinal Cord Medicine 1999, 22(4):239-245 %U http://www.tandfonline.com/doi/full/210.1080/10790268.10791999.11719576.

Ibiwoye MO, Powell KA, Grabiner MD, Patterson TE, Sakai Y, Zborowski M, Wolfman A, Midura RJ: Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. Journal of Orthopaedic Research 2004, 22(5):1086-1093 %U http://doi.wiley.com/1010.1016/j.orthres.2003.1012.1017.

Pilla AA: Low-intensity electromagnetic and mechanical modulation of bone growth and repair: are they equivalent? Journal of Orthopaedic Science 2002, 7(3):420-428 %U http://linkinghub.elsevier.com/retrieve/pii/S0949265815332097.

Fini M, Cadossi R, Canè V, Cavani F, Giavaresi G, Krajewski A, Martini L, Aldini NN, Ravaglioli A, Rimondini L et al: The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. Journal of Orthopaedic Research 2002, 20(4):756-763 %U http://doi.wiley.com/710.1016/S0736-0266%2801%2900158-2900159.

Hart FX: Spreadsheet method for calculating the induced currents in bone-fracture healing by a low-frequency magnetic field. Bioelectromagnetics 1994, 15(5):465-482 %U http://doi.wiley.com/410.1002/bem.2250150509.

Daish C, Blanchard R, Fox K, Pivonka P, Pirogova E: The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings. Annals of biomedical engineering 2018, 46(4):525-542.

Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R: Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International orthopaedics 2019:1-13.

Markov MS: Pulsed electromagnetic field therapy history, state of the art and future. The Environmentalist 2007, 27(4):465-475.

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

Panagopoulos DJ, Karabarbounis A, Margaritis LH: Mechanism for action of electromagnetic fields on cells. Biochemical and Biophysical Research Communications 2002, 298(1):95-102 %U http://linkinghub.elsevier.com/retrieve/pii/S0006291X02023938.

Dimitriou R, Tsiridis E, Giannoudis PV: Current concepts of molecular aspects of bone healing. Injury 2005, 36(12):1392-1404.

Phillips A: Overview of the fracture healing cascade. Injury 2005, 36(3):S5-S7.

Tsiridis E, Upadhyay N, Giannoudis P: Molecular aspects of fracture healing: which are the important molecules? Injury 2007, 38(1):S11-S25.

Bodamyali T, Bhatt B, Hughes FJ, Winrow VR, Kanczler JM, Simon B, Abbott J, Blake DR, Stevens CR: Pulsed Electromagnetic Fields Simultaneously Induce Osteogenesis and Upregulate Transcription of Bone Morphogenetic Proteins 2 and 4 in Rat Osteoblastsin Vitro. Biochemical and Biophysical Research Communications 1998, 250(2):458-461 %U http://linkinghub.elsevier.com/retrieve/pii/S0006291X98992439.

Guerkov HH, Lohmann CH, Liu Y, Dean DD, Simon BJ, Heckman JD, Schwartz Z, Boyan BD: Pulsed Electromagnetic Fields Increase Growth Factor Release by Nonunion Cells. Clinical Orthopaedics and Related Research 2001, 384:265-279 %U https://insights.ovid.com/crossref?an=00003086-200103000-200100031.

Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD: Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. Journal of Orthopaedic Research 2000, 18(4):637-646 %U http://doi.wiley.com/610.1002/jor.1100180417.

Oreffo ROC, Bonewald L, Kukita A, Garrett IR, Seyedin SM, Rosen D, Mundy GR: Inhibitory Effects of the Bone-Derived Growth Factors Osteoinductive Factor and Transforming Growth Factor-? on Isolated Osteoclasts*. Endocrinology 1990, 126(6):3069-3075 %U https://academic.oup.com/endo/article-lookup/doi/3010.1210/endo-3126-3066-3069.

Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD: Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. Journal of Orthopaedic Research 2008, 26(9):1250-1255 %U http://doi.wiley.com/1210.1002/jor.20591.

Bannister SR, Lohmann CH, Liu Y, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z: Shear force modulates osteoblast response to surface roughness. Journal of Biomedical Materials Research 2002, 60(1):167-174 %U http://doi.wiley.com/110.1002/jbm.10037.

Schwartz Z, Fisher M, Lohmann CH, Simon BJ, Boyan BD: Osteoprotegerin (OPG) Production by Cells in the Osteoblast Lineage is Regulated by Pulsed Electromagnetic Fields in Cultures Grown on Calcium Phosphate Substrates. Annals of Biomedical Engineering 2009, 37(3):437-444 %U http://link.springer.com/410.1007/s10439-10008-19628-10433.

Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, Khosla S: Stimulation of Osteoprotegerin Ligand and Inhibition of Osteoprotegerin Production by Glucocorticoids in Human Osteoblastic Lineage Cells: Potential Paracrine Mechanisms of Glucocorticoid-Induced Osteoporosis 1. Endocrinology 1999, 140(10):4382-4389 %U https://academic.oup.com/endo/article-lookup/doi/4310.1210/endo.4140.4310.7034.

Deckers MML, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Löwik CWGM: Expression of Vascular Endothelial Growth Factors and Their Receptors during Osteoblast Differentiation. Endocrinology 2000, 141(5):1667-1674 %U https://academic.oup.com/endo/article-lookup/doi/1610.1210/endo.1141.1665.7458.

Deckers MML, van Bezooijen RL, van der Horst G, Hoogendam J, van der Bent C, Papapoulos SE, Löwik CWGM: Bone Morphogenetic Proteins Stimulate Angiogenesis through Osteoblast-Derived

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

Vascular Endothelial Growth Factor A. Endocrinology 2002, 143(4):1545-1553 %U https://academic.oup.com/endo/article-lookup/doi/1510.1210/endo.1143.1544.8719.

Villars F, Bordenave L, Bareille R, Amade J: Effect of human endothelial cells on Human Bone Marrow Stromal Cell phenotype: Role of VEGF? Journal of Cellular Biochemistry 2000, 79(4):672-685

Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP: Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. The FASEB journal 2004, 18(11):1231-1233.

Sun L-Y, Hsieh D-K, Yu T-C, Chiu H-T, Lu S-F, Luo G-H, Kuo TK, Lee OK, Chiou T-W: Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 2009, 30(4):251-260 %U http://doi.wiley.com/210.1002/bem.20472.

Nicolin V, Ponti C, Baldini G, Gibellini D, Bortul R, Zweyer M, Martinelli B, Narducci P: In vitro exposure of human chondrocytes to pulsed electromagnetic fields. European Journal of Histochemistry 2009, 51(3):203-212.

Deng XL, Lau CP, Lai K, Cheung KF, Lau GK, Li GR: Cell cycle-dependent expression of potassium channels and cell proliferation in rat mesenchymal stem cells from bone marrow. Cell Proliferation 2007, 40(5):656-670 %U http://doi.wiley.com/610.1111/j.1365-2184.2007.00458.x.

Kang Y, Perry RR: Effect of ?-interferon on P-glycoprotein expression and function and on verapamil modulation of doxorubicin resistance. Cancer research 1994, 54(11):2952-2958.

Souviron Rodríguez A, Ruiz Gómez M, Morales Moreno J, Martínez Morillo M: Multidrug resistance in oncology. In: ANALES DE MEDICINA INTERNA-MADRID-ORGANO OFICIAL DE LA SOCIEDAD ESPANOLA DE MEDICINA INTERNA-: 1997. ARAN: 145-153.

Weaver JC: Electroporation of cells and tissues. IEEE Transactions on Plasma Science 2000, 28(1):24-33 %U http://ieeexplore.ieee.org/document/842820/.

Tsong TY: Electroporation of cell membranes. Biophysical Journal 1991, 60(2):297-306 %U https://linkinghub.elsevier.com/retrieve/pii/S0006349591820549.

Mir LM, Orlowski S: Mechanisms of electrochemotherapy. Advanced Drug Delivery Reviews 1999, 35(1):107-118 %U http://linkinghub.elsevier.com/retrieve/pii/S0169409X98000660.

Heller R, Gilbert R, Jaroszeski MJ: Clinical applications of electrochemotherapy. Advanced Drug Delivery Reviews 1999, 35(1):119-129 %U http://linkinghub.elsevier.com/retrieve/pii/S0169409X98000672.

Hofmann GA, Dev SB, Dimmer S, Nanda GS: Electroporation therapy: a new approach for the treatment of head and neck cancer. IEEE Transactions on Biomedical Engineering 1999, 46(6):752-759 %U http://ieeexplore.ieee.org/document/764952/.

Miklav?i? D, Šemrov D, Mekid H, Mir LM: A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta (BBA) - General Subjects 2000, 1523(1):73-83 %U http://linkinghub.elsevier.com/retrieve/pii/S030441650000101X.

Liang Y, Hannan JC, Chang BK, Schoenlein PV: Enhanced potency of daunorubicin against multidrug resistant subline KB-ChR-8-5-11 by a pulsed magnetic field. Anticancer research 1997, 17(3C):2083-2088.

Harland JD, Liburdy RP: Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 1997, 18(8):555-562 %U http://doi.wiley.com/510.1002/%1028SICI%291521-

Journal of Advances in Biotechnology Vol 8 (2019) ISSN: 2348-6201 https://rajpub.com/index.php/jbt

X%281997%292918%291523A291528%291523C291555%291523A%291523AAID-BEM291524%291523E291523.291520.CO%291523B291522-291521.

Murthy SN: Magnetophoresis: an approach to enhance transdermal drug diffusion. Die Pharmazie 1999, 54(5):377-379.

Morabito C, Guarnieri S, Fanò G, Mariggiò MA: Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cellular Physiology and Biochemistry 2010, 26(6):947-958.

Tuffet S, De Seze R, Moreau J-M, Veyret B: Effects of a strong pulsed magnetic field on the proliferation of tumour cells in vitro. Bioelectrochemistry and bioenergetics 1993, 30:151-160.

Loja T, Stehlikova O, Palko L, Vrba K, Rampl I, Klabusay M: Influence of pulsed electromagnetic and pulsed vector magnetic potential field on the growth of tumor cells. Electromagnetic biology and medicine 2014, 33(3):190-197.

Sadeghipour R, Ahmadian S, Bolouri B, Pazhang Y, Shafiezadeh M: Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D). Electromagnetic biology and medicine 2012, 31(4):425-435.

Crocetti S, Beyer C, Schade G, Egli M, Fröhlich J, Franco-Obregón A: Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PloS one 2013, 8(9):e72944.

Radeva M, Berg H: Differences in lethality between cancer cells and human lymphocytes caused by LF?electromagnetic fields. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 2004, 25(7):503-507.

Koh EK, Ryu B-K, Jeong D-Y, Bang I-S, Nam MH, Chae K-S: A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species. International journal of radiation biology 2008, 84(11):945-955.

Tatarov I, Panda A, Petkov D, Kolappaswamy K, Thompson K, Kavirayani A, Lipsky MM, Elson E, Davis CC, Martin SS: Effect of magnetic fields on tumor growth and viability. Comparative medicine 2011, 61(4):339-345.

Emara S, EL-Kholy S, Kazem A, Hussein N, Al-dein RS: Therapeutic effects of low frequency pulsed electromagnetic fields on rat liver cancer. Res Inventy Int J Eng Sci 2013, 2:17-18.

Nuccitelli R, Pliquett U, Chen X, Ford W, James Swanson R, Beebe SJ, Kolb JF, Schoenbach KH: Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochemical and Biophysical Research Communications 2006, 343(2):351-360 %U https://linkinghub.elsevier.com/retrieve/pii/S0006291X06004256.

Berg H, GÜnther B, Hilger I, Radeva M, Traitcheva N, Wollweber L: Bioelectromagnetic field effects on cancer cells and mice tumors. Electromagnetic biology and medicine 2010, 29(4):132-143.

Costa F, de Oliveira A, Meirelles R, Zanesco T, Surjan R, Chammas M, Barbault A, Pasche B: A phase II study of amplitude-modulated electromagnetic fields in the treatment of advanced hepatocellular carcinoma (HCC). Journal of Clinical Oncology 2007, 25(18_suppl):15155-15155.

Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B: Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. Journal of Experimental & Clinical Cancer Research 2009, 28(1):51.

Downloads

Published

2019-02-28

How to Cite

Prakash, D., Chauhan, S. S., & Behari, J. (2019). Therapeutic effectiveness of Hydroxyapatite Nanoparticles and Pulsed Electromagnetic Field in Osteoporosis and Cancer. JOURNAL OF ADVANCES IN BIOTECHNOLOGY, 8, 1058–1072. https://doi.org/10.24297/jbt.v8i0.8128

Issue

Section

Articles