THE FEKETE -SZEGO ̈ PROBLEM OF ANALYTIC FUNCTIONS BASED ON THE DEFERENtIAL OPERTOR AND CERTAIN SUBCLASSES
DOI:
https://doi.org/10.24297/jam.v22i.9499Keywords:
analytic functions, Fekete-Szego ̈ problem, The linear multiplier differential operatorAbstract
In this paper I use the operators Dmβ,η(η, φ)f, Sm(d, β, η) and Cm(d, β, η).To establish |a3−μa22 | -functional inequalities for the Fekete-Szeg ̈o problem. That’s my main result.
Downloads
References
Al-Abbadi, M. H and Darus, M, (2011), The Fekete-Szegö theorem for a certain class of analytic functions. Sains
Malaysiana. 40(4): 385-389.
Al-Shaqsi, K and Darus, M, (2008), On Fekete-Szegö problems for certain subclass of analytic functions. Appl.
Math. Sci. 2(9): 431-441
A. Pfluger, The Fekete-Szego ̈ inequality by a variational method, Ann. Acad. Sci.Fenn. Ser. A I Math. 10 (1984).
C. Pommerenke, Univalent Functions, in: Studia Mathematica Mathematische Lehr- bucher, Vandenhoeck and
Ruprecht, 1975..
D. Ra ̆ducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J.
Math. Anal. 4(1) (2010), 1-15.
Darus, M, (2002), The Fekete-Szegö problems for close-to-convex functions of the class Ksh(α, β). Acta Mathematica
Academiae Paedagogicae Nyiregyhaziensis18(1): 13-18.
E. Deniz, H. Orhan, The Fekete-Szego ̈ problem for a generalized subclass of analytic functions, Kyungpook Math.
J. 50 (2010), 37-47.
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27
(2004), 1429-1436.
Fekete, M, Szego ̈, G: Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 8, 85-89 (1933).
G. S. Sa ̆la ̆gean, Subclasses of univalent functions, Complex analysis, Proc. 5th Rom.- Finn. Semin., Bucharest
, Part 1, Lect. Notes Math. 1013 (1983), 362-372.
Ma, W and Minda, D, (1994), A unified treatment of some speial classes of univalent functions, in: Proceeding of
the conference on complex analysis, Z. Li. F.Ren, L.Yang, and S. Zhang ( Eds.), Int. Press , 157-169.
Mohammed A. and Darus M, (2010), On Fekete-Szegö problem for certain subclass of analytic functions. Int. J.
Open Problems Compt. Math. 3(4): 510-520.
. Ma, W. and Minda, D.A. 1994. Unified treatment of some special classes of univalent functions. In: Proceedings
of the Conference on Complex Analysis. Eds Li, Z., Ren, F., Yang, L. and Zhang, S. Int.Press, pp.157-169.
M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25(1985), 1-12.
M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull.(1982), 565-582.
P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Lódz., Nauki.
Mat. Przyrod. Ser. II (1971), 75-85.
Oshah, A and Darus, M, (2014), Differential sandwich theorems with a new generalized derivative operator.
Advances in Mathematics: Scientific Journal, 3(2),117-124.
RØnning, F, (1993), Uniformly convex function and a corresponding class of starlike functions, Proc. Amer. Math.
Soc., 118, 189-196.
Ravichandran, V, Gangadharan, A. and Darus, M, (2004), On Fekete-Szegö inequality for certain class of Bazilevic
functions. Far East Journal of Mathematical Sciences15(2): 171-180.
Ramadan, S.F and Darus, M, (2011), On the Fekete- Szegö inequality for a class of analytic functions defined by
using generalized differential operator, Acta Universitatis Apulensis, 26, 167-178.
. Ravichandran, V., Gangadharan, A. and Darus, M. 2004. Fekete-Szego inequality for certain class of Bazilevic
functions. Far East J. Math. Sci. 15:171-180.
. Ravichandran, V. Darus, M., Khan, M.H. and Subramanian, K.G. 2004. Fekete-Szego inequal-ity for Certain
Class of Analytic Functions. Austral. J. Math. Anal. Appl. 1, Art. 4:1-7.
. Ravichandran, V., Bolcal, M., Polotoglu, Y. and Sen, A. 2005. Certain subclasses of starlike and convex functions
of complex order. Hacet. J. Math. Stat. 34:9-15.
Srivastava, H. M. and Mishra, A. K, (2000), Applications of fractional calculus to parabolic starlike and uniformly
convex functions, Comput. Math. Appl., 39,57-69.
Srivastava H. M., Mishra A. K. and Das M. K. (2001), The Fekete-Szegö problem for a subclass of close-to-convex
functions. Complex Variables, Theory and Application 44: 145-163.
Srivastava, H. M. and Owa, S, (1989), Univalent functions, fractional calculus and their applications., John Wiley
and Sons, New Jersey.
. Shanmugam, T.N. and Sivasubramanian, S. 2005. On the Fekete-Szego problem for some subclasses of analytic
functions. J. Inequal. Pure Appl. Math.6, Art. 71:1-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 văn an lý
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.