THE FEKETE -SZEGO ̈ PROBLEM OF ANALYTIC FUNCTIONS BASED ON THE DEFERENtIAL OPERTOR AND CERTAIN SUBCLASSES

Authors

  • LY VAN AN Faculty of mathematics Teacher education, Tay Ninh University, Tay Ninh, Vietnam.

DOI:

https://doi.org/10.24297/jam.v22i.9499

Keywords:

analytic functions, Fekete-Szego ̈ problem, The linear multiplier differential operator

Abstract

In this paper I use the operators Dmβ,η(η, φ)f, Sm(d, β, η) and Cm(d, β, η).To establish |a3−μa22 | -functional inequalities for the Fekete-Szeg ̈o problem. That’s my main result.

Downloads

Download data is not yet available.

References

Al-Abbadi, M. H and Darus, M, (2011), The Fekete-Szegö theorem for a certain class of analytic functions. Sains

Malaysiana. 40(4): 385-389.

Al-Shaqsi, K and Darus, M, (2008), On Fekete-Szegö problems for certain subclass of analytic functions. Appl.

Math. Sci. 2(9): 431-441

A. Pfluger, The Fekete-Szego ̈ inequality by a variational method, Ann. Acad. Sci.Fenn. Ser. A I Math. 10 (1984).

C. Pommerenke, Univalent Functions, in: Studia Mathematica Mathematische Lehr- bucher, Vandenhoeck and

Ruprecht, 1975..

D. Ra ̆ducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J.

Math. Anal. 4(1) (2010), 1-15.

Darus, M, (2002), The Fekete-Szegö problems for close-to-convex functions of the class Ksh(α, β). Acta Mathematica

Academiae Paedagogicae Nyiregyhaziensis18(1): 13-18.

E. Deniz, H. Orhan, The Fekete-Szego ̈ problem for a generalized subclass of analytic functions, Kyungpook Math.

J. 50 (2010), 37-47.

F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27

(2004), 1429-1436.

Fekete, M, Szego ̈, G: Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 8, 85-89 (1933).

G. S. Sa ̆la ̆gean, Subclasses of univalent functions, Complex analysis, Proc. 5th Rom.- Finn. Semin., Bucharest

, Part 1, Lect. Notes Math. 1013 (1983), 362-372.

Ma, W and Minda, D, (1994), A unified treatment of some speial classes of univalent functions, in: Proceeding of

the conference on complex analysis, Z. Li. F.Ren, L.Yang, and S. Zhang ( Eds.), Int. Press , 157-169.

Mohammed A. and Darus M, (2010), On Fekete-Szegö problem for certain subclass of analytic functions. Int. J.

Open Problems Compt. Math. 3(4): 510-520.

. Ma, W. and Minda, D.A. 1994. Unified treatment of some special classes of univalent functions. In: Proceedings

of the Conference on Complex Analysis. Eds Li, Z., Ren, F., Yang, L. and Zhang, S. Int.Press, pp.157-169.

M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25(1985), 1-12.

M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull.(1982), 565-582.

P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Lódz., Nauki.

Mat. Przyrod. Ser. II (1971), 75-85.

Oshah, A and Darus, M, (2014), Differential sandwich theorems with a new generalized derivative operator.

Advances in Mathematics: Scientific Journal, 3(2),117-124.

RØnning, F, (1993), Uniformly convex function and a corresponding class of starlike functions, Proc. Amer. Math.

Soc., 118, 189-196.

Ravichandran, V, Gangadharan, A. and Darus, M, (2004), On Fekete-Szegö inequality for certain class of Bazilevic

functions. Far East Journal of Mathematical Sciences15(2): 171-180.

Ramadan, S.F and Darus, M, (2011), On the Fekete- Szegö inequality for a class of analytic functions defined by

using generalized differential operator, Acta Universitatis Apulensis, 26, 167-178.

. Ravichandran, V., Gangadharan, A. and Darus, M. 2004. Fekete-Szego inequality for certain class of Bazilevic

functions. Far East J. Math. Sci. 15:171-180.

. Ravichandran, V. Darus, M., Khan, M.H. and Subramanian, K.G. 2004. Fekete-Szego inequal-ity for Certain

Class of Analytic Functions. Austral. J. Math. Anal. Appl. 1, Art. 4:1-7.

. Ravichandran, V., Bolcal, M., Polotoglu, Y. and Sen, A. 2005. Certain subclasses of starlike and convex functions

of complex order. Hacet. J. Math. Stat. 34:9-15.

Srivastava, H. M. and Mishra, A. K, (2000), Applications of fractional calculus to parabolic starlike and uniformly

convex functions, Comput. Math. Appl., 39,57-69.

Srivastava H. M., Mishra A. K. and Das M. K. (2001), The Fekete-Szegö problem for a subclass of close-to-convex

functions. Complex Variables, Theory and Application 44: 145-163.

Srivastava, H. M. and Owa, S, (1989), Univalent functions, fractional calculus and their applications., John Wiley

and Sons, New Jersey.

. Shanmugam, T.N. and Sivasubramanian, S. 2005. On the Fekete-Szego problem for some subclasses of analytic

functions. J. Inequal. Pure Appl. Math.6, Art. 71:1-6.

Downloads

Published

2023-08-17

How to Cite

AN, L. V. . (2023). THE FEKETE -SZEGO ̈ PROBLEM OF ANALYTIC FUNCTIONS BASED ON THE DEFERENtIAL OPERTOR AND CERTAIN SUBCLASSES. JOURNAL OF ADVANCES IN MATHEMATICS, 22, 40–52. https://doi.org/10.24297/jam.v22i.9499

Issue

Section

Articles