Certain Families of Holomorphic and Sălăgean Type Bi-Univalent Functions Defined by (p,q)-Lucas Polynomials Involving a Modified Sigmoid Activation Function

Authors

  • Ali Mohammed Ramadhan Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq
  • and Najah Ali Jiben Al-Ziadi Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq

DOI:

https://doi.org/10.24297/jam.v21i.9253

Keywords:

modified sigmoid function, Sălăgean operator, Lucas polynomials, Fekete-Szegӧ inequality, Bi-univalent functions, Holomorphic function

Abstract

The aim of the present paper is to introduce a certain families of holomorphic and Sălăgean type bi-univalent functions by making use (p, q) - Lucas polynomials involving the modified sigmoid activation function Φ(δ)=z/(1+e) δ>=1  in the open unit disk Λ. For functions belonging to these subclasses, we obtain upper bounds for the second and third coefficients. Also, we debate Fekete-Szegö inequality for these families. Further, we point out several certain special cases for our results.

Downloads

Download data is not yet available.

References

Ş. Altinkaya, Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator, Turkish J. Math., 43(2019), 620-629.

Ş. Altinkaya and S. Yalçin, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent functions class σ, Boletin dela Sociedad Matematica Mexicana, (2018), 1-9.

Ş. Altinkaya and S. Yalçin, (p,q)-Lucas polynomials and their applications to bi-univalent functions, Proyecciones, 39(5)(2019), 1093-1105.

N. A. J. Al-Ziadi and A. K. Wanas, Coefficient bounds and Fekete-Szegӧ inequality for a certain families of bi-prestarlike functions defined by (M,N)-Lucas polynomials, Journal of Advances in Mathematics, 20(2021), 121-134.

S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Paris. Ser. I., 352(6)(2014), 479-484.

P. L. Duren, Univalent Functions, Vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, (1983).

O. A. Fadipe-Joseph, B. B. Kadir, S. E. Akinwumi and E. O. Adeniran, Polynomial bounds for a class of univalent function involving Sigmoid function, Khayyam J. Math. 4(1)(2018). 7-20.

B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions. Appl. Math. Lett., 24(2011), 1569-1573.

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23(1985), 7-20.

T. Horzum and E. Gӧkçen Koçer, On some properties of Horadam polynomials, Int. Math. Forum, 4(2009), 1243-1252.

A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., 7(1999), 3-12.

G. Ş. Sǎlǎgean, Subclasses of univalent functions, Lecture Notesin Math., Springer, Berlin, 1013(1983), 362-372.

T. G. Shaba and A. K. Wanas, Coefficient bounds for a new family of bi-univalent functions associated with (U,V )-Lucas polynomials, Int. J. Nonlinear Anal. Appl. 13(1) (2022), 615-626.

H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41(2015), 153-164.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188–1192.

S. R. Swamy, P. K. Mamatha, N. Magesh and J. Yamini, Certain subclasses of bi-univalent functions defined by Sǎlǎgean operator with the (p,q)-Lucas polynomial, Advances in Mathematics: Scientific Journal, 9(8)(2020), 6017-6025.

S. R. Swamy, A. K. Wanas and Y. Sailaja, Some special families of holomorphic and Sălăgean type bi-univalent functions associated with (m,n)-Lucas polynomials, Communications in Mathematics and Applications, 11(4)(2020), 563-574.

Downloads

Published

2022-07-21

How to Cite

Ramadhan, A. M. ., & Ali Jiben Al-Ziadi , and N. . (2022). Certain Families of Holomorphic and Sălăgean Type Bi-Univalent Functions Defined by (p,q)-Lucas Polynomials Involving a Modified Sigmoid Activation Function. JOURNAL OF ADVANCES IN MATHEMATICS, 21, 96–106. https://doi.org/10.24297/jam.v21i.9253

Issue

Section

Articles

Most read articles by the same author(s)