Possibilities of Preparing Pupils for Proof Problems of Synthetic Plane Geometry Solvable by Deductive Methods

Authors

  • Vojtěch Zlámal Faculty of Science of the Palacky University in Olomouc

DOI:

https://doi.org/10.24297/jam.v20i.9137

Keywords:

deductive methods, problem-solving, proof problems, pupils' preparation, synthetic plane geometry

Abstract

Proof problems, especially the ones of the synthetic plane geometry solvable by deductive methods, play a significant role in mathematical education and due to their demanding principle also in the above-standard education including mathematical competitions. Therefore, the issue of preparing pupils for solving the proof problems is very important. This study aimed to find out if the contemporary state of the system of pupils’ preparation for synthetic plane geometry proof problems is sufficient enough for the mentioned purpose. From the full set of schools of the Czech Republic, there were 14 schools identified as the successful ones based on the results of the national round of the Mathematical Olympiad. These schools were asked questions about literature used for pupils’ preparation and the publications named in the answers were then deeply inspected. The results showed a narrow range of the literature used by the schools and the didactic-methodical inspection of stated literature detected considerable space for improvements which led the author to the main theme of his dissertation.

Downloads

Download data is not yet available.

References

Kodetová, M. (2010). Sbírka úloh z planimetrie [Problems in plane geometry] (Bachelor thesis, Masaryk University, Faculty of Science, Brno).

Kučera, R., Herman, J., & Šimša, J. (2001). Metody řešení matematických úloh I (2nd ed.) [Methods of solving mathematical problems I]. Brno: Masaryk University.

Kučera, R., Herman, J., & Šimša, J. (2004). Metody řešení matematických úloh II (2nd ed.) [Methods of solving mathematical problems II]. Brno: Masaryk University.

Mačková, P. (2018). Planimetrické výpočty v příkladech [Planimetric calculations in solving problems] (Bachelor thesis, Masaryk University, Faculty of Science, Brno).

Matematická olympiáda [Mathematical Olympiad]. (2020). Retrieved from http://www.matematickaolympiada.cz

Múčková, M. (2016). Sbírka planimetrických úloh řešených pomocı́ shodností [Exercise book of plane geometry - isometric mappings] (Bachelor thesis, Masaryk University, Faculty of Science, Brno).

Parker, T. (2008). Elementary geometry for teachers. Okemos: Sefton-Ash Publishing.

Petáková, J. (1998). Matematika - přı́prava k maturitě (1st ed.) [Mathematics – Preparation for Maturita Exam]. Prague: Prometheus.

Pomykalová, E. (2000). Matematika pro gymnázia: Planimetrie (4th ed.) [Mathematics for grammar schools – Plane Geometry]. Prague: Prometheus.

Pospı́šilová, H. (2010). Sbı́rka úloh z planimetrie [Problems in plane geometry] (Bachelor thesis, Masaryk University, Faculty of Science, Brno).

Ročenka matematické olympiády na střednı́ch školách [Yearbook of Mathematical Olympiad]. (1952-). Prague: Státnı́ pedagogické nakladatelstvı́.

Škola mladých matematiků [School of Young Mathematicians]. (1961-1988). Prague: Státní pedagogické nakladatelství.

Švrček, J., & Calábek, P. (2007). Sbı́rka netradičnı́ch matematických úloh (1st ed.) [Collection of non-traditional mathematical problems]. Prague: Prometheus.

Vondra, J., Gazárková, D., Melicharová, S., Vokřı́nek, R., & Květoňová, M. (2013). Matematika pro střednı́ školy – Třetí díl (1st ed.) [Mathematics for secondary schools – Third volume]. Brno: Didaktis.

Vyšı́n, J. (1972). Metodika řešenı́ matematických úloh (2nd ed.) [Methodology of problem solving]. Prague: Státnı́ pedagogické nakladatelstvı́.

Downloads

Published

2021-12-20

How to Cite

Zlámal, V. (2021). Possibilities of Preparing Pupils for Proof Problems of Synthetic Plane Geometry Solvable by Deductive Methods. JOURNAL OF ADVANCES IN MATHEMATICS, 20, 440–448. https://doi.org/10.24297/jam.v20i.9137

Issue

Section

Articles