For the Fourier transform of the convolution in and D' and Z'
DOI:
https://doi.org/10.24297/jam.v20i.8927Keywords:
Space Z', space D', inverse Fourier trensform, Fourier transforms, convolution of distributionsAbstract
In this paper, we give another proof of the known lemma considering the Fourier transform of the convolution of a distribution and a function. Also, we give its application in the mentioned spaces.
Downloads
References
H. Bremerman: Raspredelenija, kompleksnijepermenenije i preobrazovanija Furje, Izdatelstvo ‘’Mir’’, Moskva, 1968.
Beltrami, E.J. and M.R. Wohlers: Distributions and the boundary values of analytic functions, Academic Press, New York, 1966. https://doi.org/10.1016/B978-1-4832-3168-6.50006-4
R. Carmichael, D. Mitrovic: Distributions and analytic functions, New York, 1989.
Jantcher: Distributionen, Walter de Gruyter, Berlin, New York, 1971.
N. Reckoski: One proof for the analytic representation of distributions, Matematicki Bilten 28 (LIV), Skopje, 2004 (19-30).
W. Rudin: Real and Complex Analysis, McGraw-Hill Inc., New York, 1966.
W. Rudin: Functional Analysis, North-Holland publishing company, Amsterdam, 1974.
A.H. Zemanian: Distribution Theory and Transform Analysis, McGraw-Hill Company, New York, 1965.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vasko Rechkoski, Bedrije Bedzeti, Vesna Manova Erakovikj
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.