Harmonic Matrix and Harmonic Energy
DOI:
https://doi.org/10.24297/jam.v6i1.3643Keywords:
the RandiĆ index, Harmonic Matrix, Harmonic Energy, eigenvaluesAbstract
We define the Harmonic energy as the sum of the absolute values of the eigenvalues of the Harmonic matrix, and establish some of its properties, in particular lower and upper bounds for it.
Downloads
References
I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006)29-37.
B. Zhou, I. Gutman, On Laplacian energy of graphs, MATCH Commun. Math.Comput. Chem. 57 (2007) 211-220.
S. Fajtlowicz, On conjectures of Graffiti, Discrete Math. 72 (1988) 113-118.
V. Consonni, R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.
V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.
M. R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCHCommun. Math. Comput. Chem. 62 (2009) 561-572.
F. R. K. Chung, Spectral Graph Theory, Am. Math. Soc., Providence, 1997.
J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446-455.
Bozkurt S B, Güngör A D, Gutman I. Randic matrix and Randic energy[J]. MATCH Commun. Math. Comput. Chem, 2010, 64: 239-250.
X. Li and I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006.
M. RandiĆ, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609-6615
Downloads
Published
Versions
- 2014-01-30 (2)
- 2014-01-30 (1)
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.