Harmonic Matrix and Harmonic Energy

Authors

  • LI Bingjun Hunan Institute of Humanities Science and Technology, Loudi city, Hunan 417000, China

DOI:

https://doi.org/10.24297/jam.v6i1.3643

Keywords:

the RandiĆ index, Harmonic Matrix, Harmonic Energy, eigenvalues

Abstract

We define the Harmonic energy as the sum of the absolute values of the eigenvalues of the Harmonic matrix, and establish some of its properties, in particular lower and upper bounds for it.

Downloads

Download data is not yet available.

Author Biography

LI Bingjun, Hunan Institute of Humanities Science and Technology, Loudi city, Hunan 417000, China

College of Mathematics, Central South University, Changsha, 410000, China.
Department of Mathematics

References

I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006)29-37.

B. Zhou, I. Gutman, On Laplacian energy of graphs, MATCH Commun. Math.Comput. Chem. 57 (2007) 211-220.

S. Fajtlowicz, On conjectures of Graffiti, Discrete Math. 72 (1988) 113-118.

V. Consonni, R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.

V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.

M. R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCHCommun. Math. Comput. Chem. 62 (2009) 561-572.

F. R. K. Chung, Spectral Graph Theory, Am. Math. Soc., Providence, 1997.

J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446-455.

Bozkurt S B, Güngör A D, Gutman I. Randic matrix and Randic energy[J]. MATCH Commun. Math. Comput. Chem, 2010, 64: 239-250.

X. Li and I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006.

M. RandiĆ, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609-6615

Downloads

Published

2014-01-30 — Updated on 2014-01-30

Versions

How to Cite

LI Bingjun. (2014). Harmonic Matrix and Harmonic Energy. JOURNAL OF ADVANCES IN MATHEMATICS, 6(1), 889–895. https://doi.org/10.24297/jam.v6i1.3643

Issue

Section

Articles