Estimation of Beta Regression Model with Applied Study
DOI:
https://doi.org/10.24297/jam.v12i11.10Keywords:
Beta distribution, Maximum likelihood estimation, Bayesian estimation, Regression.Abstract
This paper proposes a regression model where the dependent variable is beta distributed. Therefore the observations of the dependent variable must fall within (0,1) interval. This beta regression model produces two regression coefficients: one for the model of the mean and one for the model of the dispersion. Parameter estimation is performed by maximum likelihood and Bayesian method. Finally, numerical study is presented.Downloads
Download data is not yet available.
References
1. Bonat, W. H., R. J. P. j. &Zeviani, W. M. (2015), Likelihood analysis for a class of beta mixed models. Journal of
Applied Statistics vol. 42, issue 2.
2. Bury, K. (1999) Statistical Distributions in Engineering. New York: Cambridge University Press.
3. Cepeda, E. &Gamerman, D. (2005), Bayesian methodology for modeling parameters in the two parameter
exponential family, Estadistica 57, 93-105.
4. CoxeStefany (2012) Regression Analysis of Grouped Counts and Frequencies using the Generalized Linear
Model, ph.D, Arizona State University.
5. El-Eqully L., Measuring of Financial Risk to Off-Balance Sheet Activities and the Effecting on Auditors Going
Concern Opinions, Unpublished PhD, Tanta University, Faculty of Commerce, 2009.
6. Ferrari S. L. P., Cribari-Neto, F. (2004) Beta regression for modeling rates and proportions, Journal of applied
statistics, 31(7), 799-815.
7. Figueroa-Zuniga, J., Arellano-Valle, R.B. &S.L.p., F. (2013), Beta mixed regression: a Bayesian perspective,
Computational statistics and Data Analysis. 61, 137-147.
8. Gelman, A., Carlin, J.B., Stern, H. S., Dunson, D.B., (2014) Bayesian Data Analysis 3rd edn. CRC press, London.
9. Hviid M, Villadsen B (1995) Beta distributed market shares in a spatial model with an application to the market for
audit services. Review of industrial Organization, 10 ,737-747.
10. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, volumes 1 and 2. New York:
John Wiley & Sons, Inc.
11. Krishnamoorhy, K., (2006) Handbook of statistical Distributions with Applications, Chapman & Hall. CRC, Florida.
12. Patel, S. Balic, A. ,and Bwakira, L., Measuring Transparency and Disclosure at Firm-Level in Emerging
Markets,Emerging Markets Review,3, (2002), 325-337.
13. Patel. S. and Dallas G., Transparency and Disclosure: Overview of Methodology and Study Results-United
States, Standard & poor's Transparency and Disclosure, 2002.
14. Silva, G. L., Soares P., Marques S., Dias, M. I., Oliveira M. M., and Borges J. G., (2015) A Bayesian Modeling of
wildfires in Portugal. Dynamics, Games and science, ch. 37, sprin international publishing Switzerland, editors:
J.P. Bourguignon et al (eds, pp.723-733)
15. Simas, A., Barreto-Souza, W.& Rocha, A.(2010), Improved estimators for a general class of beta regression
models, Computational statistics & Data Analysis 54(2), 348-366.
16. Yan, X. and Su, X., G., (2009) Regression Analysis, theory and computing, world scientific publishing co., Uk.
Applied Statistics vol. 42, issue 2.
2. Bury, K. (1999) Statistical Distributions in Engineering. New York: Cambridge University Press.
3. Cepeda, E. &Gamerman, D. (2005), Bayesian methodology for modeling parameters in the two parameter
exponential family, Estadistica 57, 93-105.
4. CoxeStefany (2012) Regression Analysis of Grouped Counts and Frequencies using the Generalized Linear
Model, ph.D, Arizona State University.
5. El-Eqully L., Measuring of Financial Risk to Off-Balance Sheet Activities and the Effecting on Auditors Going
Concern Opinions, Unpublished PhD, Tanta University, Faculty of Commerce, 2009.
6. Ferrari S. L. P., Cribari-Neto, F. (2004) Beta regression for modeling rates and proportions, Journal of applied
statistics, 31(7), 799-815.
7. Figueroa-Zuniga, J., Arellano-Valle, R.B. &S.L.p., F. (2013), Beta mixed regression: a Bayesian perspective,
Computational statistics and Data Analysis. 61, 137-147.
8. Gelman, A., Carlin, J.B., Stern, H. S., Dunson, D.B., (2014) Bayesian Data Analysis 3rd edn. CRC press, London.
9. Hviid M, Villadsen B (1995) Beta distributed market shares in a spatial model with an application to the market for
audit services. Review of industrial Organization, 10 ,737-747.
10. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, volumes 1 and 2. New York:
John Wiley & Sons, Inc.
11. Krishnamoorhy, K., (2006) Handbook of statistical Distributions with Applications, Chapman & Hall. CRC, Florida.
12. Patel, S. Balic, A. ,and Bwakira, L., Measuring Transparency and Disclosure at Firm-Level in Emerging
Markets,Emerging Markets Review,3, (2002), 325-337.
13. Patel. S. and Dallas G., Transparency and Disclosure: Overview of Methodology and Study Results-United
States, Standard & poor's Transparency and Disclosure, 2002.
14. Silva, G. L., Soares P., Marques S., Dias, M. I., Oliveira M. M., and Borges J. G., (2015) A Bayesian Modeling of
wildfires in Portugal. Dynamics, Games and science, ch. 37, sprin international publishing Switzerland, editors:
J.P. Bourguignon et al (eds, pp.723-733)
15. Simas, A., Barreto-Souza, W.& Rocha, A.(2010), Improved estimators for a general class of beta regression
models, Computational statistics & Data Analysis 54(2), 348-366.
16. Yan, X. and Su, X., G., (2009) Regression Analysis, theory and computing, world scientific publishing co., Uk.
Published
2016-12-30
How to Cite
Salem, H. A. E. R. (2016). Estimation of Beta Regression Model with Applied Study. JOURNAL OF ADVANCES IN MATHEMATICS, 12(11), 6773–6777. https://doi.org/10.24297/jam.v12i11.10
Issue
Section
Articles
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.