Characteristic analysis of De-Ionised water and Ethylene Glycol based Aluminium Oxide Nanofluid
DOI:
https://doi.org/10.24297/jac.v13i0.5652Keywords:
Ultrasonic method, Magnetic stirrer method, Nano fluid, ConcentrationAbstract
Abstract - In this work, we have prepared the nanofluid contains de-ionized water + ethylene glycol + aluminium oxide at difereent concentration (weight %) by both ultrasonic and magnetic stirrer method seperately. Various experiments were carried out to determine the thermo-physical properties of nanofluid and comparison were made to evaluate the effectiveness of fluid preparation method.
Downloads
Download data is not yet available.
References
1. Hong, T.K., Yang, H.S., and Choi, C.J. 2005. Study of the enhanced thermal conductivity of Fe nanofluids. J. App. Phys 97(6):1
2. Ding, Y., Alias, H., Wen, D., and Williams, R.A. 2006. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)–2):240–250. Int J He
3. Zhu, H.T., Zhang, C.Y., Tang, Y.M., and Wang, J.X. 2007. Novel synthesis and thermal conductivity of CuO nanofluid–1650. J Phys Chem
4. Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S. 2009. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart–1136 Res 11(5):11
5. Wang, X., Xu, X., and Choi, S.U.S. 1999. Thermal conductivity of nanoparticle – fluid mixture. Thermophys Heat Transfer 13(4): 474–480
6. Czarnetzki, W., and Roetzel, W., 1995. Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int. J. Thermophys 16(2):413–422
7. Ju, Y.S., Kim, J., and Hung, M.T. 2008. Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J. Heat Transf 130(9):092403
8. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G. 2006. Thermal conductivity of nanoparticles suspensions. J ApplPhys 99(8):084308
9. Lee S, Choi SUS, Li S, Eastman, J.A., 1999. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121(2):280–288
10. Wang, X.Q., and Mujumdar, A.S., 2007. Heat transfer characteristics of nanofluids: a review. Int. J. ThermSci 46(1):1–19
11. Choi, S.U.S. 2009. Nanofluids: from vision to reality through research. J. Heat Transf 131(3):033106.
12. Murshed, S.M.S., Leong , K.C., Yang, C., 2005. Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. ThermSci 44(4):367–373
13. Chopkar, M., Sudarshan, S., Das, P.K, and Manna, I., 2008. Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans APhysMetall Mater Sci 39(7):1535–1542
14. Assael, MJ., Metaxa, I.N., Arvanitidis, J., Christofilos, D., and Lioutas, C., 2005. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3): 647–664
15. Maxwell, J.C., 1873. A treatise on electricity and magnetism. Clarendon Press, Oxford
16. Xuan, Y., Li, Q., and Hu, W., 2003. Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043
17. Lee, D., 2007. Thermophysical properties of interfacial layer in nanofluids. Langmuir 23(11):6011–6018
18. Xie, H., Wang, J., Xi, T., Liu, Y., and Ai, F., 2002b. Dependence of the thermal conductivity of nanoparticle–fluid mixture on the base fluid. J Mater SciLett 21(19):1469–1471
19. Hasselman, D.P.H., Johnson, L.F., 1987. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21(6):508–515
20. Eastman, J.A., Choi, SUS., Li, S., Yu, W., and Thompson, L.J., 2001. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. ApplPhysLett 78(6):718–720
21. Hamilton, R.L,, and Crosser, O.K., 1962. Thermal conductivity of heterogeneous two component systems. IndEngChemFundam 1(3): 187–191
22. Chopkar, M,, Das, P.K., and Manna, I., 2006. Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55(6):549–552
23. Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S., 2009. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11(5):1129–1136
24. Mintsa, H.A., Roy, G., Nguyen, C.T., and Doucet, D., 2009. New temperature dependent thermal conductivity data for water-based nanofluids. Int J ThermSci 48(2):363–371
25. Chon, C.H,, and Kihm, K.D., 2005. Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf 127(8): 810
26. Murshed, S.M.S., Leong, K.C., and Yang, C,, 2008b. Investigations of thermal conductivity and viscosity of nanofluids. Int J ThermSci 47(5):560–568
27. Prasher, R., Phelan, P.E., and Bhattacharya, P., 2006. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534
28. Xie, H., Wang, J., Xi, T., and Liu, Y., 2002a. Thermal conductivity of suspensions containing nanosizedSiC particles. Int J Thermophys 23(2):571–580
29. Murshed, S.M.S., Leong, K.C., and Yang, C., 2005. Enhanced thermal conductivity of TiO2-water based nanofluids. Int–373 J ThermSci 44(4):367
30. Li, C.H., Williams, W., Buongiorno, J., Hu, LW., and Peterson, G.P., 2008a. Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids. J Heat Transf 130(4):042407
31. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N., 1993. Alteration of thermal conductivity and viscosity of liquid by dispersing-Al2O3,SiO2,andTiO2 ultra ultra-fine particles)–233 Netsu Bussei 4(4):227
32. Das, S.K., Putta, N., 2003, Thiesen P, Roetzel W, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer (125) 567–574.
33. LiCH., Peterson, G.P., 2006. Experimental investigation often temperature and volume fraction variations on the effective thermal conductivity. Appl.Phys 99(8):1–8
34. Hong, K,S., Hong, T.K., and Yang, H.S., 2006. Thermal conduct depending on the cluster size of nanoparticles. Applied Phy Lett 88(3):1–3
35. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., and Wu, Q. 2002c. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Applied Phys 91(7):4568–4572
36. Wang, X., Zhu, D., and Yang, S., 2009. Investigation of pH and SDBS on enhancement of thermal conductivity in –3):107nanofluids–111.
2. Ding, Y., Alias, H., Wen, D., and Williams, R.A. 2006. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)–2):240–250. Int J He
3. Zhu, H.T., Zhang, C.Y., Tang, Y.M., and Wang, J.X. 2007. Novel synthesis and thermal conductivity of CuO nanofluid–1650. J Phys Chem
4. Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S. 2009. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart–1136 Res 11(5):11
5. Wang, X., Xu, X., and Choi, S.U.S. 1999. Thermal conductivity of nanoparticle – fluid mixture. Thermophys Heat Transfer 13(4): 474–480
6. Czarnetzki, W., and Roetzel, W., 1995. Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int. J. Thermophys 16(2):413–422
7. Ju, Y.S., Kim, J., and Hung, M.T. 2008. Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J. Heat Transf 130(9):092403
8. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G. 2006. Thermal conductivity of nanoparticles suspensions. J ApplPhys 99(8):084308
9. Lee S, Choi SUS, Li S, Eastman, J.A., 1999. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121(2):280–288
10. Wang, X.Q., and Mujumdar, A.S., 2007. Heat transfer characteristics of nanofluids: a review. Int. J. ThermSci 46(1):1–19
11. Choi, S.U.S. 2009. Nanofluids: from vision to reality through research. J. Heat Transf 131(3):033106.
12. Murshed, S.M.S., Leong , K.C., Yang, C., 2005. Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. ThermSci 44(4):367–373
13. Chopkar, M., Sudarshan, S., Das, P.K, and Manna, I., 2008. Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans APhysMetall Mater Sci 39(7):1535–1542
14. Assael, MJ., Metaxa, I.N., Arvanitidis, J., Christofilos, D., and Lioutas, C., 2005. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3): 647–664
15. Maxwell, J.C., 1873. A treatise on electricity and magnetism. Clarendon Press, Oxford
16. Xuan, Y., Li, Q., and Hu, W., 2003. Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043
17. Lee, D., 2007. Thermophysical properties of interfacial layer in nanofluids. Langmuir 23(11):6011–6018
18. Xie, H., Wang, J., Xi, T., Liu, Y., and Ai, F., 2002b. Dependence of the thermal conductivity of nanoparticle–fluid mixture on the base fluid. J Mater SciLett 21(19):1469–1471
19. Hasselman, D.P.H., Johnson, L.F., 1987. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21(6):508–515
20. Eastman, J.A., Choi, SUS., Li, S., Yu, W., and Thompson, L.J., 2001. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. ApplPhysLett 78(6):718–720
21. Hamilton, R.L,, and Crosser, O.K., 1962. Thermal conductivity of heterogeneous two component systems. IndEngChemFundam 1(3): 187–191
22. Chopkar, M,, Das, P.K., and Manna, I., 2006. Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55(6):549–552
23. Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S., 2009. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11(5):1129–1136
24. Mintsa, H.A., Roy, G., Nguyen, C.T., and Doucet, D., 2009. New temperature dependent thermal conductivity data for water-based nanofluids. Int J ThermSci 48(2):363–371
25. Chon, C.H,, and Kihm, K.D., 2005. Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf 127(8): 810
26. Murshed, S.M.S., Leong, K.C., and Yang, C,, 2008b. Investigations of thermal conductivity and viscosity of nanofluids. Int J ThermSci 47(5):560–568
27. Prasher, R., Phelan, P.E., and Bhattacharya, P., 2006. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534
28. Xie, H., Wang, J., Xi, T., and Liu, Y., 2002a. Thermal conductivity of suspensions containing nanosizedSiC particles. Int J Thermophys 23(2):571–580
29. Murshed, S.M.S., Leong, K.C., and Yang, C., 2005. Enhanced thermal conductivity of TiO2-water based nanofluids. Int–373 J ThermSci 44(4):367
30. Li, C.H., Williams, W., Buongiorno, J., Hu, LW., and Peterson, G.P., 2008a. Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids. J Heat Transf 130(4):042407
31. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N., 1993. Alteration of thermal conductivity and viscosity of liquid by dispersing-Al2O3,SiO2,andTiO2 ultra ultra-fine particles)–233 Netsu Bussei 4(4):227
32. Das, S.K., Putta, N., 2003, Thiesen P, Roetzel W, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer (125) 567–574.
33. LiCH., Peterson, G.P., 2006. Experimental investigation often temperature and volume fraction variations on the effective thermal conductivity. Appl.Phys 99(8):1–8
34. Hong, K,S., Hong, T.K., and Yang, H.S., 2006. Thermal conduct depending on the cluster size of nanoparticles. Applied Phy Lett 88(3):1–3
35. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., and Wu, Q. 2002c. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Applied Phys 91(7):4568–4572
36. Wang, X., Zhu, D., and Yang, S., 2009. Investigation of pH and SDBS on enhancement of thermal conductivity in –3):107nanofluids–111.
Downloads
Published
2017-02-07
How to Cite
Gopalsmy, V., & Rajasekaran, K. (2017). Characteristic analysis of De-Ionised water and Ethylene Glycol based Aluminium Oxide Nanofluid. JOURNAL OF ADVANCES IN CHEMISTRY, 13(3), 17–24. https://doi.org/10.24297/jac.v13i0.5652
Issue
Section
Articles
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.