Extraction and Characterization of New Cellulose Fiber from the Agrowaste of Lagenaria Siceraria (Bottle Guard) Plant
DOI:
https://doi.org/10.24297/jac.v12i9.3991Keywords:
Natural fiber, Lagenaria siceraria, TGA analysis, FTIR, XRD, Crystalline indexAbstract
This article explores the extraction and characterization of natural fiber from the agro-waste of Lagenaria siceraria (LS)
plant stem (commonly known as „bottle guard‟) for the first time. The extracted fiber from the waste stems has high
cellulose content (79.91 %) with good tensile strength (257–717 MPa) and thermal stability (withstand up to 339.1°C). The
immense percentage of crystalline index (92.4%) with the crystalline size (7.2 nm) as well as low density (1.216 g/cm3) of
the LS fiber renders their possibilit
Downloads
References
for performance and cost effectiveness. Materials and Design. 55:292-299.
2. Prithiviraj, M., R. Muralikannan, P. Senthamaraikannan and S. S.Saravanakumar. 2016. Characterization of new natural
cellulosic fiber from Perotis Indica Plant. Int . J . polym . Anal. Charct. DOI:10.1080/1023666X.2016.1202466.
3. Sathishkumar, T. P., P. Navaneethakrishnan, and S. Shankar. 2012. Tensile and flexural properties of snake grass
natural fiber reinforced isophthallic polyester composites. Compos. Sci. Technol. 72(10):1183–1190.
4. Johar, N., I. Ahmad and A. Dufresne. 2012. Extraction, preparation, and characterization of cellulose fibers and
nanocrystals from rice husk. Industrial Crops and Products. 37:93-99.
5. Ridzuan.M.J.M., M.S. Abdul Majid, M. Afendi, S.N. Aqmariah Kanafiah, J.M. Zahri and A.G. Gibson. 2015.
Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer
composites. Materials and Design.
6. Mohana Roopan, S., V. Devi Rajeswari, V. N. Kalpana and G. Elango. 2015. Biotechnology and pharmacological
evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Appl. Microbiol. Biotechnol.
7. Saravanakumar.S.S., A. Kumaravel, T. Nagarajan and I. Ganesh Moorthy.2014.Effect of Chemical Treatments on
Physicochemical Properties of Prosopis juliflora Fibers. Int . J . polym . Anal. Charct. 19:5, 383-390.
8. Suryanto.H., E. Marsyahyo, Y.Surya Irawan and R.Soenoko.2014.Morphology, Structure, and Mechanical Properties of
Natural Cellulose Fiber from Mendong Grass (Fimbristylis globulosa). Journal of Natural Fibers.11:4, 333-351.
9. Vignesh,V., A. N. Balaji and M. K. V. Karthikeyan.2016. Extraction and characterization of new cellulosic fibers from
Indian Mallow stem - an Exploratory Investigation. Int . J . polym . Anal. Charct.
10. Conrad, C. M., and M. Carl. 1944. Determination of wax in cotton fiber: A new alcohol extraction method. Ind.Eng.
Chem. Anal. Ed. 16(12):745–748.
11. Justiz-Smith, N. G., G. Junior Virgo, and V. E. Buchanan. 2008. Potential of jamaican banana, coconut coir and
bagasse fibres as composite materials. Mater. Charact. 59(9):1273–1278.
12. Boopathi, L., P.S. Sampath and K.Mylsamy. 2012. Investigation of physical, chemical, and mechanical properties of
raw and alkali treated Borassus fruit fiber. Composites: Part B. 43:3044-3052.
13. Natarajan,T., A. Kumaravel and R. Palanivelu. 2016. Extraction and characterization of natural cellulosic fiber from
Passiflora foetida stem. Int . J . polym . Anal. Charct.
14. French, A. D., and M. S. Cintrón. 2013. Cellulose polymorphy, crystallite size, and the Segal crystallinity
index.Cellulose 20(1):583–588.
15. NagarajaGanesh, B., and R. Muralikannan.2016. Physico-Chemical, Thermal and Flexural Characterization of Cocos
Nucifera Fibers. Int . J . polym . Anal. Charct.
16. Arthanarieswaran. V.P., A. Kumaravel and S. S. Saravanakumar.2015.Physico-Chemicalproperties of Alkali Treated
Acacia Leucophloea Fibers. Int . J . polym . Anal. Charct.
17. Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel
natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92(2):1928–1933.
18.Gopinath.R., K. Ganesan, S. S. Saravanakumar and R. Poopathi.2015.Characterization of New Cellulosic Fiber From
the Stem of Sida Rhombifolia. Int . J. polym . Anal. Charct.
19. Sun J.X., X.F. Sun, H. Zhao and R.C. Sun. 2004. Isolation and characterization of cellulose from sugarcane bagasse.
Polym Degrad Stabil. 84 (2):331-9.
20. NagarajaGanesh.B. and R. Muralikannan.2016. Extraction and Characterization of Ligno-Cellulosic Fibers From Luffa
Cylindrica Fruit. Int . J . polym . Anal. Charct.
21. Santhanam.K., A. Kumaravel, S. S. Saravanakumar and V. P.Arthanarieswaran.2016. Characterization of New Natural
Cellulosic Fiber From ipomoea Staphylinaplant, International Int . J . polym . Anal. Charct.
22. Ghali, A. EI., I.B.Marzoug, M.H.V. Baouab and M.S.Roudesil. 2012. Separation and characterization of new natural
cellulosic fiber from the Juncus Acutus L plant. BioResources. 7(2), 2002-2018.
23. Kommula. V.P., K. Obi Reddy, Mukul Shukla, Tshilidzi Marwala, E. V. Subba Reddy and A. Varada Rajulu. 2015.
Extraction, Modification, and Characterization of Natural Ligno-Cellulosic Fiber Strands From Napier Grass. Int . J . polym
. Anal. Charct.
24. Sathishkumar, T. P., P. Navaneethakrishnan, S. Shankar, and R. Rajasekar. 2013. Characterization of new cellulose
Sansevieria ehrenbergii fibers for polymer composites. Compos. Interf. 20(80):575–593.
25. Maepa.C.E., J. Jayaramudu, J. O.Okonkwo, S. S.Ray, E. R.Sadiku and J. Ramontja. 2015. Extraction and
Characterization of Natural Cellulose Fibers from MaizeTassel. Int . J . polym . Anal. Charct. 20:99–109.
26. Sarikanat, M., Y.Seki, K.Sever and C. DurmuÅŸkahya. 2014. Determination of properties of Althaea officinalis L.
(Marshmallow) fibers as a potential plant fiber in polymeric composite materials.Composites Part B: Engineering. 57(0),
180-186.
27. Reddy, K. O., C. U. Maheswari, M. Shukla, J. I. Song, and A. V. Rajulu. 2013.Tensile and structural characterization of
alkali treated Borassus fruit fine fibers. Comp.Part B: Engg. 44(1): 433-438.
28. Reddy, K. O., B. Ashok,K.R.N. Reddy, Y. Feng, J. Zhang, and A.V. Rajulu. 2014. Extraction and characterization of
novel lignocellulosic fibers from Thespesia lampas plant. Int . J . polym . Anal. Charct. 19(1), 48-61.
29. Mayandi.K., N. Rajini, P. Pitchipoo, J. T. Winowlin Jappes and A. Varada Rajulu. 2015. Extraction and
Characterization of New Natural Lingo-Cellulosic Fiber Cyperus Pangorei. Int . J . polym . Anal. Charct.
30. Senthamaraikannan, P, Saravanakumar. S.S, Arthanarieswaran. V.P and Sugumaran. P. 2016. Physicochemical
properties of new cellulosic fibers from bark of Acacia planifrons. Int. J. Polym. Anal. Charact. 21(3): 207-213.
31. Manimaran,P., S. S. Saravanakumar, N. K. Mithun and P. Senthamaraikannan. 2016. Physicochemical Properties of
New Cellulosic Fibers From Bark of Acacia Arabica. Int . J . polym . Anal. Charct.
32. Kathiresan,M., P. Pandiarajan, P. Senthamaraikannan and S. S. Saravanakumar. 2016. Physicochemical Properties of
New Cellulosic Artisdita hystrix Leaf Fiber. Int . J . polym . Anal. Charct.
33. Belouadah. Z., A. Ati and M.Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum Spartum
L.Carbohydrate Polymers. http://dx.doi.org/10.1016/j.carbpol.2015.08.024
34. De Rosa, I.M., J,M.Kenny, D.Puglia, C.Santulli and F. Sarasini. 2010. Morphological, thermal and mechanical
characterization of okra ( Abelmoschus esculentus) fibers as potential reinforcement in polymer composites. Compos. Sci.
and Technol. 70: 116-122.
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.