Allelopathic Effect of Chrysanthemum Procumentens on the Seed Germination and Seedling Growth of Beans Phaseolus Vulgaris

Akinwunmi et al

Authors

  • Kemi Akinwunmi Faculty of Science, Obafemi Awolowo University
  • Esther Odunsi Faculty of Science, Obafemi Awolowo University
  • Chizi Amadi Faculty of Science, Obafemi Awolowo University

DOI:

https://doi.org/10.24297/jaa.v11i.8702

Keywords:

Allelopathy, Chrysanthemum Procumentens, Seedling Growth, Germination

Abstract

The present study was undertaken to assess the allelopathic effect of Chrysanthemum procumentens in relation to germination and growth of bean seedling. C. procumentens reduced germination and suppressed early seedling growth of beans. With increase in extract concentration from 20 mg ml-1 to 60 mg ml-1, a gradual decrease in seed germination evaluated by reduction in the concentration of biomolecules such as total protein, total soluble sugar and amylase activities; and increase in the activities of hydrolytic enzymes such as proteases, Lipases and Arginase occurred. The longest seedling root and shoot lengths were recorded on day 1 at 20 mg ml-1 extract concentration while the shortest seedling root and shoot length were recorded on day 6 at 80 mg ml-1 extract concentrations. It was noted that the reduction in germination and suppression of seedling growth observed in this study were concentration and time dependent. The result suggested that C. procumentens had good allelopathic potential which reduces germination and plant growth.

Downloads

Download data is not yet available.

Author Biographies

Kemi Akinwunmi, Faculty of Science, Obafemi Awolowo University

Department of Biochemistry and Molecular Biology, Ile-Ife, Nigeria

Esther Odunsi, Faculty of Science, Obafemi Awolowo University

Department of Biochemistry and Molecular Biology,, Ile-Ife, Nigeria

Chizi Amadi, Faculty of Science, Obafemi Awolowo University

Department of Biochemistry and Molecular Biology, Ile-Ife, Nigeria

References

Anjorin, F. B., Adejumo, S. A., Agboola, L., Samuel, W. D., 2016. Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetări Agronomice în Moldova. 44, 3(167), 51-62. https://doi.org/10.1515/cerce-2016-0025

Baziramakenga, R., Leroux, G. D., Simard, R. R., Nadeau, P., 1997. Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Canadian Journal of Botany. 75, 445-450.

https://doi.org/10.1139/b97-047

Bewley, J. D., Black, M., 1994. Seeds: Physiology of Development and Germination. Plenum Press New York, 445. https://doi.org/10.1007/978-1-4899-1002-8

Bradford, K. M., 1976. A rapid and sensitive method for the quantification of micrograme quantities of protein utilizing the principle of protein-dye binding. Analytics of Biochemistry. 72, 248-254.

https://doi.org/10.1006/abio.1976.9999

Cheng, T. S., 2012. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquatic Toxicology. 124-125. https://doi.org/10.1016/j.aquatox.2012.08.014

Chidi-Onuorah, L. C., Onunko, A. U., Agu, K. C., Ogbue, M., Kyrian-Ogbonna, E. A., Awah, N.S., Okeke, C.B., Nweke, G.U., 2015. Optimization of Reaction Time for the Assay of Protease Activity in a Local Strain of Aspergillus niger. International Journal of Research Studies in Biosciences (IJRSB). 3(9), 1-5.

De Albuquerque, M. B., Santos, R.. C., Lima, L. M., Melo Filho, P. A., Nogueira, R. J. M. C., Da Camara, C. A. G., Ramos, A. R., 2011. Allelopathy, an alternative tool to improve cropping system. A review of Agronomy Sustainable Development. 31, 379-395. https://doi.org/10.1051/agro/2010031

Dkhil, B. B., Denden, M., 2010. Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (L). Moench seeds. African journal of Agricultural Research. 5(6), 408-415.

Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P., Smith, F., 1956. Colourimetric method for determination of sugar and related substances. Anal. Chem. 28, 350-356.

https://doi.org/10.1021/ac60111a017

Eichenberg, D., Ristok, C., Kroeber, W., Bruelheide, H., 2014. Plant polyphenols-implications of different sampling, storage and sample processing in biodiversity ecosystem functioning in BEF experiments. Chem. Eco. 17, 676-692. https://doi.org/10.1080/02757540.2014.894987

Farhad, M., Babak, A. M., , Reza, Z. M., Hassan, R. M., Afshi, T., 2011. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Austrailian Journal of Crop Science. 5(1), 55-60.

Ghareib, H.R.., Abdelhamed M.S., Ibrahim, O.H., 2010. Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biol. Manage. 10, 64-72.

https://doi.org/10.1111/j.1445-6664.2010.00368.x

Gu, Y., Wang, P. Kong, C. H. (2008). Effects of rice allelochemicals on the microbial community of flooded paddy soil. Allelopathy Journal. 22, 299-309.

Hagan, J. J., Dallam, R. D., 1968. Measurement of arginase activity. Anal. Biochem. 22, 518-524.

https://doi.org/10.1016/0003-2697(68)90293-5

Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Selamat, A., Ismail, M. R., Rezaul Karim, S. M., 2011. Studies on seed germination and growth in weed species of rice field under salinity stress. J of Environ. Bio. 32(5), 529-536.

Inderjit K. K., Duke S. O., 2003. Ecophysiological aspect of allelopathy. Planta. 217, 529-539.

https://doi.org/10.1007/s00425-003-1054-z

Iqbal, A., Fry, S. C., 2012. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effect on epidermal cell growth in Amaranthus caudatus seedlings. Journal of Experimental Botany. 63(7), 2595-2604. https://doi.org/10.1093/jxb/err436

Kaysen, G. A., and Strecker, H. J., 1973. Purification and property of arginase of rat kidney. Journal of Biochemistry, 133, 779-788. https://doi.org/10.1042/bj1330779

Kleiner, W. K., Raffa, K.F., Dickson, R. E., 1999. Partitioning of 14C-labeled photosynthate to allelochemicals and primary metabolites in source and sink leaves of aspen: evidence for secondary metabolite turnover. Oecologia. 119(3), 408-418. https://doi.org/10.1007/s004420050802

Macias, F. A., Molinillo, J. M. G., Verela, R. M., Galindo, J.C. G., 2007. Allelopathy: a natural alternative for weed control. Pest Manag. Sci. 63(4), 327-348. https://doi.org/10.1002/ps.1342

Muntz, K., 1996. Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. Journal of Experimental Botany. 47, 605-622.

https://doi.org/10.1093/jxb/47.5.605

Ona, O., Van Impe, J., Prinsen, E., Vanderleyden J., 2005. Growth and Indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiological Letters. 246, 125-132. https://doi.org/10.1016/j.femsle.2005.03.048

Polityka, B., Kozlowska, M., Mielcarz, B., 2004. Cell wall peroxidases in cucumber roots induced by phenolic allelochemicals. Allelopathy Journal. 13(1), 29-36.

Prakash, H. S., Chethan, J. S., Kumara, K. K., Shailasree, S., 2012. Antioxidant, Antibacterial and DNA protecting activity of selected medicinally important Asteraceae plants. International Journal of Pharmacy and Pharmaceutical Sciences. 4 (2), 257-261.

Putman, A. R., Tang, C. S., 1986. Allelopathy: state of the science. 1-19. In: A.R. PUTMAN; C.S. TANG. The science of Allelopathy. New York, John Wiley & Sons

Putman, A. R., Duke, W. B., 1978. Allelopathy in agroecosystem. Annual Review of Phytopathology. 16, 431-451. https://doi.org/10.1146/annurev.py.16.090178.002243

Ramakrishna, V., Ramakrishna, R. P., 2005. Purification of acidic protease from the cotyledons of germinating Indian bean (Dolichos lablab L. varlignosus) seeds. African Journal of Biotechnology, 4 (7),703-707. https://doi.org/10.5897/AJB2005.000-3130

Rice E. J., 1984. Allelopathy. Academic press Inc, Orlando FL. Second Edition. 422

Soriano, D., Huante, P., Gamboa-debuen A., Orozco-segovi, A., 2014. Effects of burial and storage on germination and seed reserves of 18 tree species in a tropical deciduous forest in Mexico. Oecologia. 174, 33-44. https://doi.org/10.1007/s00442-013-2753-1

Vandecasteele, C., Teulat-Merah, B., Paven, M.M., leprince, O., Vu, B. L., Viiau, L., Ledroit, L., Relletier, S., Payet, N., Satour, P., Lebras, C., Gallardo, K., Huguet, T., Limami, M. A., Prosperi, J., Buitink, J., 2011. Quantitative trait loci analysis reveals correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigor in Medicago truncatula. Plant, Cell and Environment. 34, 1473-1487.

https://doi.org/10.1111/j.1365-3040.2011.02346.x

Vorderwülbecke, T., Kieslich, K., Erdmann, H., 1992. Comparison of lipases by different assays. Enzyme and Microbial Technology. 14(8), 631-639. https://doi.org/10.1016/0141-0229(92)90038-P

Wahid, N., Bounoua, L., 2012. The relationship between seed weight, germination and biochemical reserves of maritime pine (Pinus pinaster Ait.) in Morocco. New Forests. 44(3), 385-397.

https://doi.org/10.1007/s11056-012-9348-2

Yuan, G. L., ma, R. X., Liu, X. F., Sun, S. S., 1998. Effect of allelochemicals on Nitrogen absorption of wheat seedling. Chin. J. Eco. Agric. 39-41.

Zhang, Y., Gu, M., Shi, K., Zhou, Y. H., Yu, J. Q., 2009. Effect of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativas L.) on nucleic DNA content and expression of cell cycle-related genes in cucumber radicles. Plant soil. 327, 455-463.

https://doi.org/10.1007/s11104-009-0075-1

Published

2020-04-19

How to Cite

Akinwunmi, K., Odunsi, E., & Amadi, C. (2020). Allelopathic Effect of Chrysanthemum Procumentens on the Seed Germination and Seedling Growth of Beans Phaseolus Vulgaris: Akinwunmi et al. JOURNAL OF ADVANCES IN AGRICULTURE, 11, 44-54. https://doi.org/10.24297/jaa.v11i.8702

Issue

Section

Articles