Removal of methylene blue by orange and uvaia seeds

Authors

  • Bianca Mesquita Coelho Botrel Federal University of Lavras (UFLA), Lavras - MG, Brazil
  • Zuy Maria Magriotis Federal University of Lavras (UFLA), Lavras - MG, Brazil
  • Adelir Aparecida Saczk Federal University of Lavras (UFLA), Lavras - MG, Brazil
  • Sabrina Mesquita Coelho Federal University of Lavras (UFLA), Lavras - MG, Brazil
  • Priscila Ferreira de Sales Federal University of Lavras (UFLA), Lavras - MG, Brazil

DOI:

https://doi.org/10.24297/jaa.v3i3.6568

Keywords:

Adsorption, Agroindustrial wastes, Methylene blue, Orange seed, Uvaia seed

Abstract

In this study, the adsorption behavior of methylene blue (MB) was investigated using orange seed (OS) and uvaia seed (US) as low cost adsorbents. These materials were characterized using FTIR (Fourier transform infrared spectroscopy), elemental chemical analysis (CHNO), thermogravimetric analysis (TGA), zeta potential, specific surface area and a test for determination of acid sites. The parameters evaluated in the kinetic study of adsorption were contact time, initial dye concentration, mass of adsorbent and pH. The adsorption of MB onto OS and US samples could be explained by Elovich ?s kinetic model. The experimental isotherms data, carried out at the temperatures of 25°C, 35°C, 45°C and 55°C, were better represented by Sips. It was verified that the adsorption was spontaneous and endothermic according to the thermodynamic parameters ?G°, ?H ° and ?S ° evaluated. The OS and US maximum adsorption capacity at the temperature of 25°C was 38 mg g-1 and 48 mg g-1 , respectively. The reuse tests performed at three subsequent times showed that there was no significant decrease regarding the materials efficiency, therefore emphasizing its viability as biosorbents.

Downloads

Download data is not yet available.

References

Klen, M. R. F., Cervelin, P. C., Veit, M. T., Gonçalves, G. C., Bergamasco, R., Silva, F. V. (2012) Adsorption kinetics of blue 5G dye from aqueous solution on dead floating aquatic macrophyte: Effect of pH, temperature, and pretreatment. Water, Air, Soil Pollut, 223, 4369-4381. [http://link.springer.com/article/10.1007%2Fs11270-012-1201-x#page-1]

Wu, Q., Feng, C., Wang, C., Wang, Z. (2013) A facile one-pot solvothermal method to produce superparamagnetic grapheme-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloids Surf. B, 101, 210-214. [http://www.ncbi.nlm.nih.gov/pubmed/23010021]

Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., Addou, A. (2008) Methylene blue and iodine adsorption onto an activated desert plant. Bioresour.Technol. 99, 8441-8444. [http://www.sciencedirect.com/science/article/pii/S0960852408001983]

Dallago, R. M., Smaniotto, A., Oliveira, L. C. (2005) Resíduos Sólidos de Curtumes como adsorventes para a Remoção de Corantes em Meio Aquoso. Quim. Nova, 28, 433-437. [http://abqct.com.br/artigost/artigoesp32.pdf]

Abdallah, R., Taha, S. (2012) Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigates. Chem. Eng. J. 195-196, 69-76. [http://www.sciencedirect.com/science/article/pii/S1385894712005281]

Fan, L., Zhou, Y., Yang, W., Chen, G., Yang, F. (2008) Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes Pigm. 76, 440–446. [http://www.sciencedirect.com/science/article/pii/S0143720806003895]

Sudarjanto, G., Keller-Lehmann, B., Keller, J. (2006) Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. J. Hazard. Mater. 138, 160–168. [http://www.ncbi.nlm.nih.gov/pubmed/16814466]

Ofomaia, A. E., Ukpebor, E. E., Uzoekwe, S. A. (2011) Biosorption of methyl violet onto palm Kernel fiber: Diffusion studies and multistage process design to minimize biosobent mass and contact time, Biomass Bioenergy. 35, 4112- 4123. [http://www.researchgate.net/publication/251629067_Biosorption_of_Methyl_violet_onto_palm_kernel_fiber_Diffusion_studies_and_multistage_process_design_to_minimize_biosorbent_mass_and_contact_time]

Lodha B., Chaudhari, S. (2007) Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J. Hazard. Mater. 148, 459-466. [http://www.ncbi.nlm.nih.gov/pubmed/17403567]

Dogan, M., Ozdemir, Y., Alkan, M. (2007) Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigm.75, 701-713. [http://www.sciencedirect.com/science/article/pii/S014372080600307X]

Rafatullaha, M., Sulaimana, O., Hashima, R., Ahmadb, A. (2010) Adsorption of methylene blue on low cost adsorbents: A review. J. Hazard. Mater. 177, 70–80. [http://www.sciencedirect.com/science/article/pii/S0304389409020354]

Singh, K. P., Mohan, D., Sinha, S., Tondon, G. S., Gosh, D. (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind. Eng. Chem. Res. 42, 1965-1976. [http://pubs.acs.org/doi/abs/10.1021/ie020800d]

Carvalho, W. S., Martins, D. F., Gomes, F. R., Leite, I. R., da Silva, L. G., Rugguero, R., Richter, E. M. (2011) Phosphate adsorption on chemically modified sugarcane bagasse fibres. Biomass Bioenergy. 35, 3913-3919. http://www.researchgate.net/publication/232407321_Phosphate_adsorption_on_chemically_modified_sugarcane_bag asse_fibres]

Phan, N. H., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., Nguyen, T. H. (2006) Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon. 44, 2569-2577. [http://www.sciencedirect.com/science/article/pii/S0008622306003150]

Franca, A. S., Oliveira, L. S., Ferreira, M. E. (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination. 249, 267-272. [http://www.sciencedirect.com/science/article/pii/S0011916409008376]

Vieira, S. S., Magriotis, Z. M., Santos, N. A. V., Cardoso, M. G., Saczk, A. A. (2012) Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes. Chem. Eng. J. 183, 152-161. [http://www.sciencedirect.com/science/article/pii/S138589471101597X]

Chowdhury, S., Mishra, R., Saha, P., Kushwaha, P. (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination. 265, 158-168. [http://www.sciencedirect.com/science/article/pii/S001191641000545X]

Sun, X. F., Xu, F., Sun, R. C., Fowler, P., Baird, M. S. (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research. 340, 97-106. [http://www.sciencedirect.com/science/article/pii/S0008621504004616]

Rubio, J., Schneider I. A. H., Ribeiro, Costa, T., C. A., Kallfez, C. A. (2004) Plantas Aquáticas: Sorventes Naturais. Rev. Cienc. Hoje, 35, 68–71. [http://www.petronews.com.br/download.php?recid=52] [20] Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C. P., Simon, N. M., Calvete, T., Veses, R. C. (2009) Applications of Brazilian-pine fruit shell in natural and carbonized forms as adsorbents to removal methylene blue from aqueous solutions - kinetic and equilibrium study. J. Hazard. Mater. 164, 1213-1222. [http://www.ncbi.nlm.nih.gov/pubmed/18930589]

Kumar, K. V., Porkodi, K. (2006) Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel. J. Hazard. Mater. 138, 633–635. [http://www.sciencedirect.com/science/article/pii/S0304389406007205]

Kumar, P. S., Ramalingam, V., Sathishkumar, V. (2011) Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent, Korean. Chem. Eng. J. 28, 149–155. [http://link.springer.com/article/10.1007%2Fs11814-010-0342-0#page-1]

Yang, J., Qiu, K. (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem. Eng. J. 165, 209–217. [http://www.sciencedirect.com/science/article/pii/S1385894710008491]

Al-Anber, Z. A., Al-Anber, M. A., Matouq, M., Al-Ayed, O., Omari, N. M. (2011) Defatted Jojoba for the removal of methylene blue from aqueous solution: Thermodynamic and kinetic studies. Desalination. 276, 169–174. [http://www.sciencedirect.com/science/article/pii/S001191641100261X]

Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F., Trouvé, G. (2011) Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies. Desalination. 271, 80–87. [http://www.sciencedirect.com/science/article/pii/S0011916410009161]

Kumar, K. V., Kumaran, A. (2005) Removal of methylene blue by mango seed kernel powder. Bioch. Eng.J. 27, 83–

[http://www.sciencedirect.com/science/article/pii/S1369703X05002342] [27] Lagergren, S. (1898) About the theory of so-called adsorption of soluble substance, K. Sven. Vetenskapsakad. Handl. 24, 1-39. [About the theory of so-called adsorption of soluble substance]

Ho, Y. S., Mckay, G. (1999) Pseudo-second order model for sorption process. Process Biochem., 34, 451-465. [http://www.sciencedirect.com/science/article/pii/S0032959298001125]

Weber, W. J., Morris, J. C. (1963) Kinetics of adsorption on carbon from solution, J. Sanit. Eng. 89, 31-59. [http://cedb.asce.org/cgi/WWWdisplay.cgi?13042]

Juang, R. S., Chen, M. L. (1997) Applicationof the Elovich equation to the kinetics of metal sorption with solventimpregnated resins. Chem. Eng. J. 36, 813-820. [http://pubs.acs.org/doi/abs/10.1021/ie960351f]

Lopes, E. C. N., dos Anjos, F. S. C., Vieira, E. F. S., Cestari, A. R. (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. J.Colloid Interface Sci. 263, 542-547. [http://www.sciencedirect.com/science/article/pii/S0021979703003266]

Langmuir, I. (1918) The adsoption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem.So. 40, 1361-1403. [http://pubs.acs.org/doi/abs/10.1021/ja02242a004]

Freundlich, H. M. F. (1906) Over the adsorption in solution, J. Phys. Chem. 57, 385-471.

Sips, R., (1948) Combined from of Langmuir and Freundlich equations. J. Chem. Phys. 16, 490-495.

Dubinin, M. M. (1960) The Potential Theory of Adsoption of Gases and Vapors for Adsorbents with Energetically non uniforms Surfaces. Chem. Rev. 60, 235-241. [http://www.researchgate.net/publication/231246767_The_Potential_Theory_of_Adsorption_of_Gases_and_Vapors_for_Adsorbents_with_Energetically_Nonuniform_Surfaces].

Downloads

Published

2015-01-03

How to Cite

Coelho Botrel, B. M., Magriotis, Z. M., Saczk, A. A., Coelho, S. M., & de Sales, P. F. (2015). Removal of methylene blue by orange and uvaia seeds. JOURNAL OF ADVANCES IN AGRICULTURE, 3(3), 236–251. https://doi.org/10.24297/jaa.v3i3.6568

Issue

Section

Articles