ACCUMULATION AND PARTITION OF Fe, Zn, Cu, Mn AND Na IN MACRO AND MICRONUTRIENT-DEFICIENT COWPEA PLANTS

Mineral nutrition in cowpea

Authors

  • Rafael de Souza Miranda Universidade Federal do Ceará (UFC), Departamento de Bioquímica e Biologia Molecular. Rua Campus do Pici, s/n, CEP: 60.440-554, Fortaleza, Ceará, Brasil.
  • Fabricio Bonfim Suderio Universidade Estadual do Ceara (UECE), Faculdade de Educacao de Crateus, Rua Dr. José Furtado, s/n, CEP: 63.700-000, Crateus, Ceara, Brasil
  • Elton Camelo Marques Universidade Federal Rural do Semi-Árido, Departamento de Ciências Ambientais e Tecnológicas, CEP: 59.625-900 Mossoró, Rio Grande do Norte, Brasil
  • Eneas Gomes-Filho Universidade Federal do Ceara (UFC), Departamento de Bioquímica e Biologia Molecular. Rua Campus do Pici, s/n, CEP: 60.440-554, Fortaleza, Ceara, Brasil.

DOI:

https://doi.org/10.24297/jaa.v7i2.6237

Keywords:

nutrient accumulation, nutritional deficiency, Vigna unguiculata

Abstract

Cowpea (Vigna unguiculata) is an important crop for people living in the semi-arid tropics where it is used as food, animal feed and forage. Researches related to nutritional status of plants are important, principally in crops commonly grown in nutrient-poor soils. This study aimed to analyze the growth and accumulation/distribution of some micronutrients in cowpea plants submitted to macro and micronutrient deficiency. Cowpea seeds were germinated in grit and after five days, ten uniform seedlings were transferred to complete nutrient solution for an acclimatization period. After three days, the plants were  grown in nutrient solution containing all macro and micronutrients or in nutrient solution  without N, Ca, K, Mg, P, S, Fe, B or aeration. In all case, omission of mineral nutrients and  the aeration caused reductions in the dry mass of cowpea plants, except for B; however, the absence of Ca was the most limiting for plant growth. Interestingly, the root Fe content significantly increased in Mg-, P- and S-deficient plants. Yet, Fe-deficient plants displayed a significant increase in Cu and Mn content, regardless of plant organ. Our data clearly demonstrate that the Ca is the most important nutrient for V. unguiculata growth, followed by N and Fe. The accumulation and partition of Fe, Zn, Cu and Mn in cowpea vary differentially  in root, stem and leaf as affected by nutritional deficiency.

Downloads

Download data is not yet available.

References

[1] Armengaud, P. Sulpice, R., Miller, A. J., Stitt, M. Amtmann, A. and Gibon, Y. 2009. 259 Multilevel analysis of primary metabolism provides new insights into the role of 260 potassium nutrition for glycolysis and nitrogen assimilation in Arabidobpsis roots. Plant 261 Physiology, 150, 772-785. 262
[2] Baxter, I. 2009. Ionomics: studying the social network of mineral nutrients. Current 263 Opinion in Plant Biology, 12, 381-386. 264
[3] Ferreira, D. F. 2001. Sisvar: a computer statistical analysis system. Ciência e 265 Agrotecnologia, 35, 1039-1042. 266
[4] Fournier, J. M., Roldán, Á. M., Sánchez, C., Alexandre, G. and Benlloch, M. 2005. K+ 267 starvation increases water uptake in whole sunflower plants. Plant Science, 168, 823-829. 268
[5] Gonçalves, F. C., Neves, O. S. C. and Carvalho, J. G. 2006. Deficiência nutricional em 269 mudas de umbuzeiro decorrente da omissão de macronutrientes. Pesquisa Agropecuária 270 Brasileira, 41, 1053-1057. 271
[6] Hermans, C., Hammond, J. P., White, P. J. and Verbruggen, N. 2007. How do plants 272 respond to nutrient shortage by biomass allocation? TRENDS Plant Science, 11, 610-617. 273
[7] Jordan-Meille, L. and Pellerin, S. 2008. Shoot and root growth of hydroponic mayze (Zea 274 mays L.) as influenced by K deficiency. Plant Soil, 304, 157-168. 275
[8] Karley, A. J. and White, P. J. 2009. Moving cationic minerals to edible tissues: potassium, 276 magnesium, calcium. Current Opinion in Plant Biology, 12, 291-298. 277
[9] Lange, A., Martines, A. M., Silva, M. A. C., Sorreano, M. C. M. Cabral, C. P. and 278 Malavolta, E. 2005. Efeitos da deficiência de micronutrientes no estado nutricional da 279 mamoneira cultivar Iris. Pesquisa Agropecuária Brasileira, 40, 61-67. 280
[10] Maathuis, F. J. M. 2009. Physiological functions of mineral macronutrients. Current 281 Opinion in Plant Biology, 12, 250-258. 282
[11] Malavolta, E., Leão, H. C., Oliveira, S. C., Junior, J. L., Moraes, M .F., Cabral, C. P. and 283 Malavolta, M. 2006. Repartição de nutrientes nas flores, folhas e ramos da laranjeira 284 cultivar natal. Revista Brasileira Fruticultura, 28, 506-511. 285
[12] Malavolta, E., Vitti, G. C. and Oliveira, S. A. 1989. Avaliação do estado nutricional das 286 plantas. Princípios e aplicações. Piracicaba: Associação Brasileira para Pesquisa da 287 Potassa e do Fosfato, Brasil, p. 201. 288
[13] Mendes, R. M. S., Távora, F. J. A. F., Pitombeira, J. B. and Nogueira, R. J. M. C. 2007. 289 Relações fonte-dreno em feijão-de-corda submetido à deficiência hídrica. Revista Ciência 290 Agronômica, 38, 95-103. 291
[14] Miranda, R. S., Sudério, F. B., Sousa, A. F. and Gomes-Filho, E. 2010. Deficiência 292 nutricional em plântulas de feijão-de-corda decorrente da omissão de macro e 293 micronutrientes. Revista Ciência Agronômica, 41, 326-333. 294
[15] Orivaldo, A., Rodrigues, R. A. F., Sá, M. E., Buzetti, S. and Nascimento, V. 2004. 295 Manejo do solo, água e nitrogênio no cultivo de feijão. Pesquisa Agropecuária Brasileira, 296 39, 131-138. 297
[16] Page, M. J. and Di Cera E. 2006. Role of Na+ and K+ in enzymes function. Physiological 298 Reviews, 86, 1049-1092. 299
[17] Salvador, J. O., Moreira, A. and Muraoka, T. 1999. Efeitos da omissão combinada de N, 300 P, K e S nos teores foliares de macronutrientes em mudas de goiabeira. Scientia Agricola, 301 56, 501-507. 302
[18] Santos, J. F., Grangeiro, J. I. T., Brito, C. H. and Santos, M. C. C. A. 2009. Produção e 303 componentes produtivos de variedades de feijão-caupi. Revista Brasileira de Engenharia 304 Agrícola e Ambiental, 6, 214-222. 305
[19] Silva, F, C. 1999. Manual de Análises Químicas de Solos, Plantas e Fertilizantes. 306 Brasília: Embrapa Comunicação para Transferência de Tecnologia, Brasil, p. 370 307
[20] Silva, J. R. A. and Falcão, N. P. S. 2002. Caracterização de sintomas de carências 308 nutricionais em mudas de pupunheira cultivadas em solução nutritiva. Acta Amazonica, 309 32, 529-532. 310
[21] Taiz, L. and Zeiger, E. 2010. Plant Physiology. 5ª Edição, Sinauer Associates. 311
[22] Turkan, I. and Demiral, T. 2009. Recent developments in understanding salinity 312 tolerance. Environmental and Experimental Botany, 67, 2-9. 313
[23] Viégas, I. J. M., Thomaz, M. A. A., Silva, J. F., Conceição, H. E. O. and Naiff, A. P. M. 314 2004. Efeito da omissão de macronutrientes e boro no crescimento, nos sintomas de 315
deficiências nutricionais e na composição mineral de plantas de camucamuzeiro. Revista 316 Brasileira de Fruticultura, 26, 315-319. 317
[24] Walker, D., Leigh, R. and Miller, A. J. 1996. Potassium homeostasis in vacuolated plant 318 cells. Proceedings of the National Academy of Sciences of the USA, 93, 10510-10514. 319
[25] Wang, Y. and Wu, W. H. 2010. Plant sensing and signaling in response to K+-deficiency. 320 Molecular Plant, 3, 280-287. 321

Downloads

Published

2017-07-22

How to Cite

Miranda, R. de S., Suderio, F. B., Marques, E. C., & Gomes-Filho, E. (2017). ACCUMULATION AND PARTITION OF Fe, Zn, Cu, Mn AND Na IN MACRO AND MICRONUTRIENT-DEFICIENT COWPEA PLANTS: Mineral nutrition in cowpea. JOURNAL OF ADVANCES IN AGRICULTURE, 7(2), 1036–1043. https://doi.org/10.24297/jaa.v7i2.6237

Issue

Section

Articles