Rotitome-G: Principles and design concept of experimental compliant continuum robotic microsurgical endoscopic sarcotome for pixel/voxel-level target access neurosurgery

Authors

  • Harjeet Singh Gandhi Hamilton Health Sciences, Ontario

DOI:

https://doi.org/10.24297/ijct.v23i.9549

Keywords:

Motion path planning, Micro-Biomimetic systems, Surgical robotics, Flexible endoscope, Pixelectomy, Optoelectronics, Neuroendoscopy, Neurosurgery

Abstract

The practice of minimal access surgery is widely accepted, and it has become prevalent with improved endoscope design. The traditional microscope in neurosurgery is gradually being challenged by the neuro-endoscope for its direct co-axial vision and direct illumination of the deep set subcortical pathology. The conceptualized design of Rotitome-G is based on compliant continuum robotic system. The system is a biomimicry of muscular hydrostat anatomy of the elephant trunk, a plant tendril, and many similar structures in the animal world with an infinite degree of freedom. The article describes the functional anatomy of these structures and the extensor expansion of the human finger as applied to the construction and implementation of the Rotitome-G. This flexible microsurgical endoscope integral to its design has unique cutting tool versions and multiple assistive tools passed through single ‘target access’ burr hole aperture. It is navigable within the surgical space co-relative to the image space to increase precision and improve the volume of tumour resection. The current study is theoretical and further work is in progress to assess its surgical capabilities to bring it to the clinical arena.

Downloads

Download data is not yet available.

References

Abbott, R. (2004). History of neuroendoscopy. In Neurosurgery Clinics of North America (Vol. 15, Issue 1). https://doi.org/10.1016/S1042-3680(03)00065-2

Abolfotoh, M., Bi, W. L., Hong, C. K., Almefty, K. K., Boskovitz, A., Dunn, I. F., & Al-Mefty, O. (2015). The combined microscopic-endoscopic technique for radical resection of cerebellopontine angle tumors. Journal of Neurosurgery, 123(5). https://doi.org/10.3171/2014.10.JNS141465

Ainger, R., & Gillquist, J. (n.d.). Arthoscopy of the knee. Thieme Medical Publishers, New York.

Alqahtani, A. A., Dallan, I., & Castelnuovo, P. (2014). Transorbital Transnasal Endoscopic Combined Approach to Anterior and Middle Skull Base: Laboratory Investigation. Otolaryngology–Head and Neck Surgery, 151(1_suppl). https://doi.org/10.1177/0194599814541627a316

Alqumsan, A. A., Khoo, S., & Norton, M. (2019). Robust control of continuum robots using Cosserat rod theory. Mechanism and Machine Theory, 131. https://doi.org/10.1016/j.mechmachtheory.2018.09.011

Aylmore, H., Dimitrakakis, E., Carmichael, J., Khan, D., Stoyanov, D., Dorward, N., & Marcus, H. (2022). Specialised Surgical Instruments for Endoscopic and Endoscope-Assisted Neurosurgery: A Systematic Review of Safety, Efficacy and Usability. Cancers, 14(12), 1–20.

Barber, S. M., Rangel-Castilla, L., & Baskin, D. (2013). Neuroendoscopic resection of intraventricular tumors: A systematic outcomes analysis. In Minimally Invasive Surgery (Vol. 2013). https://doi.org/10.1155/2013/898753

Barth, O. (2000). Harmonic piezodrive - miniaturized servo motor. Mechatronics, 10(4). https://doi.org/10.1016/S0957-4158(99)00062-8

Bhattu, A. A., & Kulkarni, S. (2021). Dynamics of Tendon Actuated Continuum Robots by Cosserat Rod Theory. In CISM International Centre for Mechanical Sciences, Courses and Lectures (Vol. 601). https://doi.org/10.1007/978-3-030-58380-4_50

Brown, A. H. (1993). Circumnutations: From Darwin to space flights. In Plant Physiology (Vol. 101, Issue 2). https://doi.org/10.1104/pp.101.2.345

Brown, T. (2001). Optical fibers and Fiber-optic communications. In M. Bass, JM. S. Enoch, EWV. tryland, & W. Wolfe (Eds.), Handbook of Optics (Second, Vol. 4, pp. 1.3-1.51). The McGraw-Hill, Companies Inc.

Camarillo, D. B., Milne, C. F., Carlson, C. R., Zinn, M. R., & Salisbury, J. K. (2008). Mechanics modeling of tendon-driven continuum manipulators. IEEE Transactions on Robotics, 24(6). https://doi.org/10.1109/TRO.2008.2002311

Carton, F.-X., Chabanas, M., le Lann, F., & Noble, J. H. (2020). Automatic segmentation of brain tumor resections in intraoperative ultrasound images using U-Net. Journal of Medical Imaging, 7(03). https://doi.org/10.1117/1.jmi.7.3.031503

Ceccarini, F., Guerra, S., Peressotti, A., Peressotti, F., Bulgheroni, M., Baccinelli, W., Bonato, B., & Castiello, U. (2021). On-line control of movement in plants. Biochemical and Biophysical Research Communications, 564, 86–91. https://doi.org/10.1016/j.bbrc.2020.06.160

Chen, S., Sun, L., Zhou, X., Guo, Y., Song, J., Qian, S., Liu, Z., Guan, Q., Meade Jeffries, E., Liu, W., Wang, Y., He, C., & You, Z. (2020). Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14446-2

Chikhaoui, M. T., & Burgner-Kahrs, J. (2018). Control of continuum robots for medical applications: State of the art (invited review). ACTUATOR 2018 - 16th International Conference and Exhibition on New Actuators and Drive Systems, Conference Proceedings.

Chirikjian GS. (1992). Theory and applications of hyper-redundant robotic manipulators [California Institute of Technology]. https://doi.org/DOI: 10.7907/F12D-0X25

Choi, H. R., Jung, K., Ryew, S., Nam, J. do, Jeon, J., Koo, J. C., & Tanie, K. (2005). Biomimetic soft actuator: Design, modeling, control, and applications. IEEE/ASME Transactions on Mechatronics, 10(5). https://doi.org/10.1109/TMECH.2005.856108

Dagenais, P., Hensman, S., Haechler, V., & Milinkovitch, M. C. (2021). Elephants evolved strategies reducing the biomechanical complexity of their trunk. Current Biology, 31(21). https://doi.org/10.1016/j.cub.2021.08.029

Dong, X., Raffles, M., Cobos-Guzman, S., Axinte, D., & Kell, J. (2016). A novel continuum robot using twin-Pivot compliant joints: Design, modeling, and validation. Journal of Mechanisms and Robotics, 8(2). https://doi.org/10.1115/1.4031340

Du, X., Lin, X., Wang, C., Zhou, K., Wei, Y., & Tian, Z. (2022). Endoscopic surgery versus craniotomy in the treatment of spontaneous intracerebral hematoma: a systematic review and meta-analysis. Chi Neurosurg J ., 8(1), 1–12.

Ebel, F., Greuter, L., Guzman, R., & Soleman, J. (2022). Resection of brain lesions with a neuroendoscopic ultrasonic aspirator - a systematic literature review. Neurosurg Rev ., 45(5), 3109–3118.

Emile, O., le Floch, A., & Vollrath, F. (2007). Time-resolved torsional relaxation of spider draglines by an optical technique. Physical Review Letters, 98(16). https://doi.org/10.1103/PhysRevLett.98.167402

Feng, F., Hong, W., & Xie, L. (2020). Design of 3D-Printed Flexible Joints with Presettable Stiffness for Surgical Robots. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2991092

Feng, Y., Ide, T., Nabae, H., Endo, G., Sakurai, R., Ohno, S., & Suzumori, K. (2021). Safety-enhanced control strategy of a power soft robot driven by hydraulic artificial muscles. ROBOMECH Journal, 8(1). https://doi.org/10.1186/s40648-021-00194-5

Foroughi, J., Spinks, G. M., Aziz, S., Mirabedini, A., Jeiranikhameneh, A., Wallace, G. G., Kozlov, M. E., & Baughman, R. H. (2016). Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing. ACS Nano, 10(10). https://doi.org/10.1021/acsnano.6b04125

Gandhi, H. (2022). Experimental Endoscope Rotitome-G: A pixel-by-pixel erasure microsurgical endoscopic sarcotome for resection of soft tissue tumours in closed body cavities. International Journal of Computer and Technology, 22(Open Access), 147–170.

Gandhi, H. S. (2022). Hyalite Sol-Gel Amoeba: A Physiology-Based Biophysical Model for Segmentation and Biotransformation of Medical Images To 3D Solid-State Characterizing Native Tissue Properties for Patient-Specific and Patient-Appropriate Analysis for Surgical Applications. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 22, 64–85. https://doi.org/10.24297/ijct.v22i.9228

George Thuruthel, T., Ansari, Y., Falotico, E., & Laschi, C. (2018). Control Strategies for Soft Robotic Manipulators: A Survey. In Soft Robotics (Vol. 5, Issue 2). https://doi.org/10.1089/soro.2017.0007

Gerard, I. J., Kersten-Oertel, M., Petrecca, K., Sirhan, D., Hall, J. A., & Collins, D. L. (2017). Brain shift in neuronavigation of brain tumors: A review. In Medical Image Analysis. https://doi.org/10.1016/j.media.2016.08.007

Gifari, M. W., Naghibi, H., Stramigioli, S., & Abayazid, M. (2019). A review on recent advances in soft surgical robots for endoscopic applications. In International Journal of Medical Robotics and Computer Assisted Surgery (Vol. 15, Issue 5). https://doi.org/10.1002/rcs.2010

Grant, B. D., Quang, T., Possati-Resende, J. C., Scapulatempo-Neto, C., de Macedo Matsushita, G., Mauad, E. C., Stoler, M. H., Castle, P. E., Guerreiro Fregnani, J. H. T., Schmeler, K. M., & Richards-Kortum, R. (2019). A mobile-phone based high-resolution microendoscope to image cervical precancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0211045

Gu, G. Y., Zhu, J., Zhu, L. M., & Zhu, X. (2017). A survey on dielectric elastomer actuators for soft robots. In Bioinspiration and Biomimetics (Vol. 12, Issue 1). https://doi.org/10.1088/1748-3190/12/1/011003

Hall, J. (2016a). Guyton and Hall textbook of Medical Physiology (13 International). Elsevier Inc.

Hall, J. (2016b). Guyton and Hall textbook of Medical Physiology (13 International). Elsevier Inc.

Hannan, M. W., & Walker, I. D. (2003). Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. Journal of Robotic Systems, 20(2). https://doi.org/10.1002/rob.10070

Hao, G., Dai, F., He, X., & Liu, Y. (2017). Design and analytical analysis of a large-range tri-symmetrical 2R1T compliant mechanism. In Microsystem Technologies (Vol. 23, Issue 10). https://doi.org/10.1007/s00542-017-3423-8

Hartkens, T., Hill, D. L. G., Castellano-Smith, A. D., Hawkes, D. J., Maurer, C. R., Martin, A. J., Hall, W. A., Liu, H., & Truwit, C. L. (2003). Measurement and analysis of brain deformation during neurosurgery. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2002.806596

Hassan, T., Cianchetti, M., Mazzolai, B., Laschi, C., & Dario, P. (2017). Active-Braid, a Bioinspired Continuum Manipulator. IEEE Robotics and Automation Letters, 2(4). https://doi.org/10.1109/LRA.2017.2720842

Heckman, C., & Enoka, R. (2012). Motor Unit. Comprehensive Physiology, 2(4), 2629–2682.

Hopkins H, & Kapany NS. (1954). A Flexible Fibrescope, using Static Scanning. Nature, 173, 39–41.

Howie C, Lynch K, Hutchinson, S., Kantor G, Wolfram B, Kavraki L, & Thrun S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press.

Isbister, A., Bailey, N. Y., & Georgilas, I. (2021). An Integrated Kinematic Modeling and Experimental Approach for an Active Endoscope. Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.667205

Jacobs I. (2001). Optical fiber communication Technologies and system overview. In M. Bass, JM. Enoch, EWV. Stryland, & W. Wolfe (Eds.), Handbook of Optics (second, Vol. 4, pp. 2.1-2.16). The McGraw-Hill, Companies Inc.

J.Hecht. (2004). City of light — the story of fibre optics. In Optics and Lasers in Engineering.

Karan, S. K., Maiti, S., Kwon, O., Paria, S., Maitra, A., Si, S. K., Kim, Y., Kim, J. K., & Khatua, B. B. (2018). Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy, 49. https://doi.org/10.1016/j.nanoen.2018.05.014

Kato, T., Okumura, I., Kose, H., Takagi, K., & Hata, N. (2016). Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation. International Journal of Computer Assisted Radiology and Surgery, 11(4). https://doi.org/10.1007/s11548-015-1310-2

Khuri-Yakub, B. T., & Oralkan, Ö. (2011). Capacitive micromachined ultrasonic transducers for medical imaging and therapy. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/0960-1317/21/5/054004

Kier, W. M. (2012). The diversity of hydrostatic skeletons. In Journal of Experimental Biology (Vol. 215, Issue 8). https://doi.org/10.1242/jeb.056549

Kier, W. M., & Smith, K. K. (1983). The biomechanics of movement in tongues and tentacles. Journal of Biomechanics, 16(4). https://doi.org/10.1016/0021-9290(83)90176-8

KIER, W. M., & SMITH, K. K. (1985). Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats. Zoological Journal of the Linnean Society, 83(4). https://doi.org/10.1111/j.1096-3642.1985.tb01178.x

Kier, W. M., & Stella, M. P. (2007). The arrangement and function of octopus arm musculature and connective tissue. Journal of Morphology, 268(10). https://doi.org/10.1002/jmor.10548

Kim, Y., Cheng, S. S., Diakite, M., Gullapalli, R. P., Simard, J. M., & Desai, J. P. (2017). Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot. IEEE Transactions on Robotics, 33(6). https://doi.org/10.1109/TRO.2017.2719035

Kinoshita, M., Kijima, N., Kagawa, N., & Kishima, H. (2021). The exoscope paradigm shift in neurosurgery. Japanese Journal of Neurosurgery, 30(3). https://doi.org/10.7887/jcns.30.199

Klute, G. K., Czerniecki, J. M., & Hannaford, B. (1999). McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. https://doi.org/10.1109/aim.1999.803170

Kumar, B., & Singh, K. P. (2014). Fatigueless response of spider draglines in cyclic torsion facilitated by reversible molecular deformation. Applied Physics Letters, 105(21). https://doi.org/10.1063/1.4902942

Langer, M., Amanov, E., & Burgner-Kahrs, J. (2018). Stiffening sheaths for continuum robots. Soft Robotics, 5(3). https://doi.org/10.1089/soro.2017.0060

Li, K. W., Nelson, C., Suk, I., & Jallo, G. I. (2005). Neuroendoscopy: past, present, and future. In Neurosurgical focus (Vol. 19, Issue 6). https://doi.org/10.3171/foc.2005.19.6.2

Li, M., Kang, R., Geng, S., & Guglielmino, E. (2018). Design and control of a tendon-driven continuum robot. Transactions of the Institute of Measurement and Control, 40(11). https://doi.org/10.1177/0142331216685607

Li, S., & Hao, G. (2021). Current trends and prospects in compliant continuum robots: A survey. In Actuators (Vol. 10, Issue 7). https://doi.org/10.3390/act10070145

Li, T., Li, Y., & Zhang, T. (2019). Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors. Accounts of Chemical Research, 52(2). https://doi.org/10.1021/acs.accounts.8b00497

Luo, M., Skorina, E. H., Tao, W., Chen, F., Ozel, S., Sun, Y., & Onal, C. D. (2017). Toward modular soft robotics: Proprioceptive curvature sensing and sliding-mode control of soft bidirectional bending modules. Soft Robotics, 4(2). https://doi.org/10.1089/soro.2016.0041

Manti, M., Cacucciolo, V., & Cianchetti, M. (2016). Stiffening in soft robotics: A review of the state of the art. IEEE Robotics and Automation Magazine, 23(3). https://doi.org/10.1109/MRA.2016.2582718

Marchese, A. D., Katzschmann, R. K., & Rus, D. (2014). Whole arm planning for a soft and highly compliant 2D robotic manipulator. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2014.6942614

Marcus, H. J., Seneci, C. A., Hughes-Hallett, A., Cundy, T. P., Nandi, D., Yang, G. Z., & Darzi, A. (2016). Comparative Performance in Single-Port Versus Multiport Minimally Invasive Surgery, and Small Versus Large Operative Working Spaces. Surgical Innovation, 23(2). https://doi.org/10.1177/1553350615610650

Meijer, K., Rosenthal, M. S., & Full, R. J. (2001). Muscle-like actuators? A comparison between three electroactive polymers. Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, 4329. https://doi.org/10.1117/12.432649

Moosa, S., Ding, D., Mastorakos, P., Sheehan, J. P., Liu, K. C., & Starke, R. M. (2018). Endoport-assisted surgical evacuation of a deep-seated cerebral abscess. Journal of Clinical Neuroscience, 53. https://doi.org/10.1016/j.jocn.2018.04.028

Motkoski, J., & Sutherland, G. (2014). Progress in Neurosurgical Robotics. In F. A. Jolesz (Ed.), Intraoperative Imaging and Image-Guided Therapy (ed, pp. 601–612). Springer Science+Business Media.

Nakaji, P., & Spetzler, R. F. (2004). Innovations in surgical approach: the marriage of technique, technology, and judgment. Clinical Neurosurgery.

Ota, T., Degani, A., Schwartzman, D., Zubiate, B., McGarvey, J., Choset, H., & Zenati, M. A. (2009). A Highly Articulated Robotic Surgical System for Minimally Invasive Surgery. Annals of Thoracic Surgery, 87(4). https://doi.org/10.1016/j.athoracsur.2008.10.026

Ozel, S., Skorina, E. H., Luo, M., Tao, W., Chen, F., Pan, Y., & Onal, C. D. (2016). A composite soft bending actuation module with integrated curvature sensing. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June. https://doi.org/10.1109/ICRA.2016.7487703

Pelrine, R., Kornbluh, R., Qibing, P., Stanford, S., Seajin, O., Eckerle, J., Full, R. J., Rosenthal, M., & Meijer, K. (2017). Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion. Smart Structures and Materials, 4695.

Perneczky, A., Reisch, R., & Kindel, S. (1994). Concept and Surgical Technique: Keyhole Approaches in Neurosurgery (Vol. 1). Springer 2008.

Prochazka, A., & Ellaway, P. (2012). Sensory systems in the control of movement. In Comprehensive Physiology (Vol. 2, Issue 4). https://doi.org/10.1002/cphy.c100086

Proske, U., & Gandevia, S. (2012). The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev . 2012 Oct;92(4):1651-97, 92(4), 1651–1697.

Reisch, R., Stadie, A., Kockro, R. A., & Hopf, N. (2013). The keyhole concept in neurosurgery. In World Neurosurgery (Vol. 79, Issue 2 SUPPL.). https://doi.org/10.1016/j.wneu.2012.02.024

Renda, F., Boyer, F., Dias, J., & Seneviratne, L. (2018). Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics. IEEE Transactions on Robotics, 34(6). https://doi.org/10.1109/TRO.2018.2868815

Rigante, L., Borghei-Razavi, H., Recinos, P. F., & Roser, F. (2019). An overview of endoscopy in neurologic surgery. In Cleveland Clinic Journal of Medicine (Vol. 86, Issue 10). https://doi.org/10.3949/ccjm.86.me.18142

Rigneault, H., Andresen, E., Kudlinski, A., & Bouwmans, G. (2018). New fiber probes for biosensing and imaging. Optics InfoBase Conference Papers, Part F111-SOF 2018. https://doi.org/10.1364/SOF.2018.SoW1H.1

Sayehmiri, F., Starke, R. M., Eichberg, D. G., Ghanikolahloo, M., Rahmatian, A., Fathi, M., Vakili, K., Ebrahimzadeh, K., Rezaei, O., Samadian, M., Mousavinejad, S. A., Maloumeh, E. N., Tavasol, H. H., & Sharifi, G. (2022). Comparison of microscopic and endoscopic resection of third-ventricular colloid cysts: A systematic review and meta-analysis. In Clinical Neurology and Neurosurgery (Vol. 215). https://doi.org/10.1016/j.clineuro.2022.107179

Shaikh, S., & Deopujari, C. (2020). The endoscope and instruments for minimally invasive neurosurgery. Mini-Invasive Surgery, 2020. https://doi.org/10.20517/2574-1225.2020.97

Shehata, N., Kandas, I., Hassounah, I., Sobolčiak, P., Krupa, I., Mrlik, M., Popelka, A., Steadman, J., & Lewis, R. (2018). Piezoresponse, mechanical, and electrical characteristics of synthetic spider silk nanofibers. Nanomaterials, 8(8). https://doi.org/10.3390/nano8080585

Shim, K. W., Park, E. K., Kim, D. S., & Choi, J. U. (2017). Neuroendoscopy: Current and future perspectives. In Journal of Korean Neurosurgical Society (Vol. 60, Issue 3). https://doi.org/10.3340/jkns.2017.0202.006

Singh, I., Rohilla, S., Kumar, P., & Krishana, G. (2018). Combined microsurgical and endoscopic technique for removal of extensive intracranial epidermoids. Surgical Neurology International, 9(1). https://doi.org/10.4103/sni.sni_392_17

Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials: Review. In Progress in Polymer Science (Oxford) (Vol. 36, Issue 9). https://doi.org/10.1016/j.progpolymsci.2011.05.003

Song, Y., Li, M., Sun, L., & Qin, L. (2006). A novel miniature mobile robot system for micro operation task. 9th International Conference on Control, Automation, Robotics and Vision, 2006, ICARCV ’06. https://doi.org/10.1109/ICARCV.2006.345347

Standring, S. (2008). Gray’s Anatomy: The anatomical basis of clinical practice. In Edinburg. Elsevier Churchill Livingstone. https://doi.org/10.1017/CBO9781107415324.004

Stevanovic, M. v, & Sharpe, F. (2017). Green’s operative hand surgery. In Green’s Operative Hand Surgery.

Steven, E., Park, J. G., Paravastu, A., Lopes, E. B., Brooks, J. S., Englander, O., Siegrist, T., Kaner, P., & Alamo, R. G. (2011). Physical characterization of functionalized spider silk: Electronic and sensing properties. Science and Technology of Advanced Materials, 12(5). https://doi.org/10.1088/1468-6996/12/5/055002

Steven, E., Saleh, W. R., Lebedev, V., Acquah, S. F. A., Laukhin, V., Alamo, R. G., & Brooks, J. S. (2013). Carbon nanotubes on a spider silk scaffold. Nature Communications, 4. https://doi.org/10.1038/ncomms3435

Tammam, M., Khayat, R. E., Khallaf, M., & Hassan, M. H. (2022). The endoscopic-assisted approach versus the microscopic only approach in resection of cerebellopontine angle epidermoids: a 5-year retrospective study. Egypt J Neurol Psychiatry Neurosurg, 58, 1–5.

Tan, T. K., Merola, J., Zaben, M., Gray, W., & Leach, P. (2021). Neuroendoscopy versus Craniotomy in Basal Ganglia Haemorrhage: A Systematic Review and Meta-Analysis. British Journal of Surgery, 108(Supplement_6). https://doi.org/10.1093/bjs/znab258

Tan, T. K., Merola, J., Zaben, M., Gray, W., & Leach, P. (2022). Craniotomy versus endoscopic approach in basal ganglia haemorrhage: A systematic review and meta-analysis. Neurology Asia, 27(1), 45–62. https://doi.org/10.54029/2022nzf

Tondu, B., Boitier, V., & Lopez, P. (1994). Naturally compliant robot-arms actuated by McKibben artificial muscles. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 3. https://doi.org/10.1109/icsmc.1994.400269

Trivedi, D., Rahn, C. D., Kier, W. M., & Walker, I. D. (2008). Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3). https://doi.org/10.1080/11762320802557865

Trout, J. M., Walsh, E. J., & Fayer, R. (2002). Rotifers Ingest Giardia Cysts. The Journal of Parasitology. https://doi.org/10.2307/3285557

Tuchman, A., Platt, A., Winer, J., Pham, M., Giannotta, S., & Zada, G. (2014). Endoscopic-assisted resection of intracranial epidermoid tumors. In World Neurosurgery (Vol. 82, Issues 3–4). https://doi.org/10.1016/j.wneu.2013.03.073

Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. In Nature (Vol. 410, Issue 6828). https://doi.org/10.1038/35069000

Vollrath, F., Madsen, B., & Shao, Z. (2001). The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proceedings of the Royal Society B: Biological Sciences, 268(1483). https://doi.org/10.1098/rspb.2001.1590

Wallace, R. L. (2002). Rotifers: Exquisite metazoans. Integrative and Comparative Biology.

Webster, R. J., Okamura, A. M., & Cowan, N. J. (2006). Toward active cannulas: Miniature snake-like surgical robots. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2006.282073

Webster, R. J., Romano, J. M., & Cowan, N. J. (2009). Mechanics of precurved-tube continuum robots. IEEE Transactions on Robotics, 25(1). https://doi.org/10.1109/TRO.2008.2006868

Wickham, J. (1987). The new surgery. Br Med J (Clin Res Ed) . 1987 Dec;295(6613):1581-2, 295(6613), 1581–1582.

Yan, C., Yan, H., & Jin, W. (2021). Application of Endoport-Assisted Neuroendoscopic Techniques in Lateral Ventricular Tumor Surgery. Reseach Square.

Yang, C., Geng, S., Walker, I., Branson, D. T., Liu, J., Dai, J. S., & Kang, R. (2020). Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness. International Journal of Robotics Research, 39(14). https://doi.org/10.1177/0278364920913929

Yang, Y., Wu, Y., Li, C., Yang, X., & Chen, W. (2020). Flexible Actuators for Soft Robotics. Advanced Intelligent Systems, 2(1). https://doi.org/10.1002/aisy.201900077

Youn, J. H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K. U. (2020). Dielectric elastomer actuator for soft robotics applications and challenges. Applied Sciences (Switzerland), 10(2). https://doi.org/10.3390/app10020640

Yun, S., Park, S., Park, B., Ryu, S., Jeong, S. M., & Kyung, K. U. (2020). A soft and transparent visuo-haptic interface pursuing wearable devices. IEEE Transactions on Industrial Electronics, 67(1). https://doi.org/10.1109/TIE.2019.2898620

Zhao, B., Zhang, W., Zhang, Z., Zhu, X., & Xu, K. (2018). Continuum Manipulator with Redundant Backbones and Constrained Bending Curvature for Continuously Variable Stiffness. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2018.8593437

Zhao, H., Huang, R., & Shepherd, R. F. (2016). Curvature control of soft orthotics via low cost solid-state optics. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June. https://doi.org/10.1109/ICRA.2016.7487590

Zhao, Y., & Chen, X. (2016). Endoscopic treatment of hypertensive intracerebral hemorrhage: A technical review. Chronic Diseases and Translational Medicine, 2(3). https://doi.org/10.1016/j.cdtm.2016.11.002

Downloads

Published

2023-12-02

How to Cite

Gandhi, H. S. (2023). Rotitome-G: Principles and design concept of experimental compliant continuum robotic microsurgical endoscopic sarcotome for pixel/voxel-level target access neurosurgery. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 23, 136–166. https://doi.org/10.24297/ijct.v23i.9549

Issue

Section

Research Articles

Most read articles by the same author(s)