In-silico patient-specific and patient-appropriate engineering method to judiciously select an ameliorative implant design in a single-patient using finite element-n-of-1 (fe-n-of-1) empirical test analysis to reconstruct mid-sagittal osteochondrotomy of the sternum following cardiac surgery

Authors

  • Harjeet Singh Gandhi Hamilton Health Sciences, Ontario

DOI:

https://doi.org/10.24297/ijct.v22i.9288

Keywords:

Sternotomy, sternal dehiscence, finite element analysis, n-of-1 trial, implant design selection, cardiac surgery, open heart surgery, Implant hierarchy, single-patient, Patient-appropriate medicine

Abstract

Introduction: No two patients have similar normal anatomy and physiology because of genetics, physical development, and age that the same type of surgery and reconstruction implant will perform equally well. Such a notion demands the need for individualization of treatment and a method to select an ameliorative implant prospectively. One such empirically testing method is the finite element-n-of-1 (fe-n-of-1), where a treatment plan is executed specifically and systematically for a single patient as part of pre-operative planning.

Objective: It is to evaluate and discuss the method of finite element analysis to carry out the fe-n-of-1 empirical test in a fact-driven manner connecting various scientific domains. It presents a preliminary protocol how to select an ameliorative implant to mitigate sternal instability due to suboptimal standard stainless-steel cerclage wiring to reconstruct the sternum following open-heart surgery. 

Methodology: The instability following the reconstruction of the sternum is a mechanical problem therefore it is appropriate to apply harmless structural engineering methods to choose a suitable implant design to fix it. This exploratory descriptive research describes finite element n-of-1 empirical testing using in-silico engineering principles applied to patient-specific and patient-appropriate mechanical loading conditions.

Conclusion: Single-patient fe-n-of-1 empirical testing is a benign engineering method based on finite element modeling and finite element analysis. It is a safe mathematical evaluation free from subjective bias to select in advance the most ameliorative implant design to opt out of the suboptimal stainless steel cerclage wire as ‘standard of care’ and improve patient-based outcome and surgeon satisfaction. 

Downloads

Download data is not yet available.

References

Allen, K. B., Thourani, V. H., Naka, Y., Grubb, K. J., Grehan, J., Patel, N., Guy, T. S., Landolfo, K., Gerdisch, M., Bonnell, M., & Cohen, D. J. (2017). Randomized, multicenter trial comparing sternotomy closure with rigid plate fixation to wire cerclage. Journal of Thoracic and Cardiovascular Surgery, 153(4), 888–896. https://doi.org/10.1016/j.jtcvs.2016.10.093

Aubert, B., Vergari, C., Ilharreborde, B., Courvoisier, A., & Skalli, W. (2016). 3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 4(5), 281–295. https://doi.org/10.1080/21681163.2014.913990

Balachandran, S., Lee, A., Denehy, L., Lin, K.-Y., Royse, A., Royse, C., & El-Ansary, D. (2016). Risk Factors for Sternal Complications After Cardiac Operations: A Systematic Review. The Annals of Thoracic Surgery, 102(6), 2109–2117. https://doi.org/10.1016/j.athoracsur.2016.05.047

Baskett, R. J. F., MacDougall, C. E., & Ross, D. B. (1999). Is mediastinitis a preventable complication? A 10-year review. Annals of Thoracic Surgery. https://doi.org/10.1016/S0003-4975(98)01195-3

Bitsakos, C., Kerner, J., Fisher, I., & Amis, A. A. (2005). The effect of muscle loading on the simulation of bone remodelling in the proximal femur. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2004.03.005

Brunet, F., Brusset, A., Squara, P., Philip, Y., Abry, B., Roy, A., Amrein, C., Guillemain, R., Dubois, C., De Lentdecker, P., Aberkane, L., Ouaknine, R., Tronc, F., Bruniauax, J., Duffet, J. P., Yakar, V., Lamer, C., Petrie, J., & Lucet, J. C. (1996). Risk factors for deep sternal wound infection after sternotomy: A prospective, multicenter study. Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.1016/S0022-5223(96)70222-2

Caimmi, P., Sabbatini, M., & Kapetanakis, E. et al. (2017). A randomized trial to assess the contribution of a Novel Thorax Support Vest (Corset) in preventing mechanical complications of median sternotomy. In Cardiol ogy Therapy (Vol. 6, pp. 41–46).

Casanova, M., Balmelli, A., Carnelli, D., Courty, D., Schneider, P., & Müller, R. (2017). Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. Royal Society Open Science. https://doi.org/10.1098/rsos.160971

Casha, A. R., Yang, L., Kay, P. H., Saleh, M., & Cooper, G. J. (1999). A biomechanical study of median sternotomy closure techniques. European Journal of Cardio-Thoracic Surgery, 15(3), 365–369. https://doi.org/10.1016/S1010-7940(99)00014-7

Couteau, B., Payan, Y., & Lavallée, S. (2000). The mesh-matching algorithm: An automatic 3D mesh generator for finite element structures. Journal of Biomechanics. https://doi.org/10.1016/S0021-9290(00)00055-5

Cristofolini, L., Conti, G., Juszczyk, M., Cremonini, S., Sint Jan, S. Van, & Viceconti, M. (2010). Structural behaviour and strain distribution of the long bones of the human lower limbs. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2009.11.022

Culliford, A. T., Cunningham, J. N., Zeff, R. H., Isom, O. W., Teiko, P., & Spencer, F. C. (1976). Sternal and costochondral infections following open-heart surgery. A review of 2,594 cases. Journal of Thoracic and Cardiovascular Surgery.

Currey, J. D. (1988). The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. Journal of Biomechanics. https://doi.org/10.1016/0021-9290(88)90006-1

Dalton, M. L., Connally, S. R., & Sealy, W. C. (1992). Julian’s reintroduction of Milton’s operation. The Annals of Thoracic Surgery, 53(3), 532–533. https://doi.org/10.1016/0003-4975(92)90293-D

Dell’Amore, A., Congiu, S., Campisi, A., Mazzarra, S., Zanoni, S., & Giunta, D. (2020). Sternal reconstruction after post-sternotomy dehiscence and mediastinitis. Indian Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.1007/s12055-019-00880-5

Duan, N., Kravitz, R. L., & Schmid, C. H. (2013). Single-patient (n-of-1) trials: A pragmatic clinical decision methodology for patient-centered comparative effectiveness research. Journal of Clinical Epidemiology. https://doi.org/10.1016/j.jclinepi.2013.04.006

Dworzak, J., Lamecker, H., Von Berg, J., Klinder, T., Lorenz, C., Kainmüller, D., Seim, H., Hege, H. C., & Zachow, S. (2010). 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/s11548-009-0390-2

Feinstein, A. R. (1968). Clinical epidemiology. I. The populational experiments of nature and of man in human illness. Annals of Internal Medicine, 69(4), 807–820. https://doi.org/10.7326/0003-4819-69-4-807

Filsoufi, F., Castillo, J. G., Rahmanian, P. B., Broumand, S. R., Silvay, G., Carpentier, A., & Adams, D. H. (2009). Epidemiology of Deep Sternal Wound Infection in Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia. https://doi.org/10.1053/j.jvca.2009.02.007

Gandhi, H. S. (2019a). Rationale and options for choosing an optimal closure technique for primary midsagittal osteochondrotomy of the sternum, part 2: A theoretical and critical review of techniques and fixation devices. Critical Reviews in Biomedical Engineering. https://doi.org/10.1615/CritRevBiomedEng.2019026453

Gandhi, H. S. (2019b). Rationale and options for choosing an optimal closure technique for primary midsagittal osteochondrotomy of the sternum. Part 3: Technical decision making based on the practice of patient- appropriate medicine. Critical Reviews in Biomedical Engineering. https://doi.org/10.1615/CritRevBiomedEng.2019026454

Gandhi, H. S. (2022a). A Comprehensive Review of Computer Vision Techniques to Interest Physicians and Surgeons, Role of A Clinical Biomechanical Engineer in Pre-Operative Surgical Planning, And Preamble To HSG-Amoeba, A New Concept of Biomedical Image Modeling Technique. International Journal of Computers and Technology, Vol. 22 (2022), 1–49. https://doi.org/10.24297/ijct.v22i.9219

Gandhi, H. S. (2022b). Patient-appropriate and patient-specific quantification: Application of biomedical sciences and engineering principles for the amelioration of outcomes following reconstruction of osteochondrotomy of the sternum to access the mediastinum. International Journal Of Computers & Technology, 22, 86–113. https://doi.org/10.24297/ijct.v22i.9229

Goh, S. S. C. (2017). Post-sternotomy mediastinitis in the modern era. Journal of Cardiac Surgery, 32(9), 556–566. https://doi.org/10.1111/jocs.13189

Gorlitzer, M., Wagner, F., Pfeiffer, S., Folkmann, S., Meinhart, J., Fischlein, T., Reichenspurner, H., & Grabenwoeger, M. (2013). Prevention of sternal wound complications after sternotomy: Results of a large prospective randomized multicentre trial. Interactive Cardiovascular and Thoracic Surgery, 17(3), 515–522. https://doi.org/10.1093/icvts/ivt240

Guyatt, G., Sackett, D., Taylor, D. W., Ghong, J., Roberts, R., & Pugsley, S. (1986). Determining Optimal Therapy — Randomized Trials in Individual Patients. New England Journal of Medicine. https://doi.org/10.1056/NEJM198604033141406

Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., & Viceconti, M. (2008). Mathematical relationships between bone density and mechanical properties: A literature review. In Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2007.08.024

Helgason, B., Taddei, F., Pálsson, H., Schileo, E., Cristofolini, L., Viceconti, M., & Brynjólfsson, S. (2008). A modified method for assigning material properties to FE models of bones. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2007.05.006

Hogben L, Sim, M. (1953). The self-controlled and self-recorded clinical trial for low-grade morbidity. Br J Prev Soc Med., 7(4), 163–179. https://doi.org/10.1136/jech.7.4.163

Hogben, L., & Sim, M. (2011). The self-controlled and self-recorded clinical trial for low-grade morbidity. International Journal of Epidemiology. https://doi.org/10.1093/ije/dyr026

Hutton, D. (2003). Fundamentals of Finite Element Analysis (First). McGraw-Hill.

Irwin RS. (2006). Complications of cough: ACCP evidence-based clinical practice guidelines. Chest, 129(1 Supp), 54S–58S. https://doi.org/doi: 10.1378/chest.129.1_suppl.54S

Jolivet, E., Sandoz, B., Laporte, S., Mitton, D., & Skalli, W. (2010). Fast 3D reconstruction of the rib cage from biplanar radiographs. Medical and Biological Engineering and Computing. https://doi.org/10.1007/s11517-010-0610-5

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision. https://doi.org/10.1007/BF00133570

Klement, A., & Herrmann, M. (2010). Supportive treatment using a compression garment vest of painful sternal instability following deep surgical wound infection: A case report. Journal of Medical Case Reports. https://doi.org/10.1186/1752-1947-4-266

Kravitz, R. L., Duan, N., & Braslow, J. (2004). Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages. In Milbank Quarterly. https://doi.org/10.1111/j.0887-378X.2004.00327.x

Lobos, C., Bucki, M., Hitschfeld, N., & Payan, Y. (2008). Mixed-element mesh for an intra-operative modeling of the brain tumor extraction. Proceedings of the 16th International Meshing Roundtable, IMR 2007. https://doi.org/10.1007/978-3-540-75103-8_22

Lobos, C., Payan, Y., & Hitschfeld, N. (2010). Techniques for the generation of 3D finite element meshes of human organs. In Informatics in Oral Medicine: Advanced Techniques in Clinical and Diagnostic Technologies. https://doi.org/10.4018/978-1-60566-733-1.ch009

Longford, N. T. (1999). Selection bias and treatment heterogeneity in clinical trials. Statistics in Medicine. https://doi.org/10.1002/(SICI)1097-0258(19990630)18:12<1467::AID-SIM149>3.0.CO;2-H

Loop, F. D., Lytle, B. W., Cosgrove, D. M., Mahfood, S., McHenry, M. C., Goormastic, M., Stewart, R. W., Golding, L. A. R., & Taylor, P. C. (1990). Sternal wound complications after isolated coronary artery bypass grafting: Early and late mortality, morbidity, and cost of care. The Annals of Thoracic Surgery, 49(2), 179–187. https://doi.org/10.1016/0003-4975(90)90136-T

Malladi, R., Sethian, J. A., & Vemuri, B. C. (1995). Shape Modeling with Front Propagation: A Level Set Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/34.368173

Mayer, D. (2010a). A brief history of medicine and statistics. In D. Mayer (Ed.), Essential evidenced-based medicine (Second, pp. 1–8). Cambridge University Press.

Mayer, D. (2010b). Randomized clinical trials. In D. Mayer (Ed.), Essential evidence based medicine (Second, pp. 164–178). Cambridge University Press.

Mayer Dan. (2010). An overview of decision making in medicine. In D. Mayer (Ed.), Essential evidence based medicine (Second, pp. 215–232). Cambridge University Press.

Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics. https://doi.org/10.1016/S0021-9290(03)00071-X

Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics. https://doi.org/10.1016/S0021-9290(01)00011-2

Nazerali, R. S., Hinchcliff, K., & Wong, M. S. (2014). Rigid fixation for the prevention and treatment of sternal complications: A review of our experience. Annals of Plastic Surgery, 72(SUPPL. 1). https://doi.org/10.1097/SAP.0000000000000155

Nicholson, P. H. F., Cheng, X. G., Lowet, G., Boonen, S., Davie, M. W. J., Dequeker, J., & Van Der Perre, G. (1997). Structural and material mechanical properties of human vertebral cancellous bone. Medical Engineering and Physics. https://doi.org/10.1016/S1350-4533(97)00030-1

Nishida, N., Ohgi, J., Jiang, F., Ito, S., Imajo, Y., Suzuki, H., Funaba, M., Nakashima, D., Sakai, T., & Chen, X. (2019). Finite Element Method Analysis of Compression Fractures on Whole-Spine Models Including the Rib Cage. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2019/8348631

Nobakhti, S., & Shefelbine, S. J. (2018). On the Relation of Bone Mineral Density and the Elastic Modulus in Healthy and Pathologic Bone. In Current Osteoporosis Reports. https://doi.org/10.1007/s11914-018-0449-5

Oliveira, M. L., Pedrosa, E. F. N. C., Cruz, A. D., Haiter-Neto, F., Paula, F. J. A., & Watanabe, P. C. A. (2013). Relationship between bone mineral density and trabecular bone pattern in postmenopausal osteoporotic Brazilian women. Clinical Oral Investigations. https://doi.org/10.1007/s00784-012-0882-2

Perrault, L. P., Kirkwood, K. A., Chang, H. L., Mullen, J. C., Gulack, B. C., Argenziano, M., Gelijns, A. C., Ghanta, R. K., Whitson, B. A., Williams, D. L., Sledz-Joyce, N. M., Lima, B., Greco, G., Fumakia, N., Rose, E. A., Puskas, J. D., Blackstone, E. H., Weisel, R. D., & Bowdish, M. E. (2018). A Prospective Multi-Institutional Cohort Study of Mediastinal Infections After Cardiac Operations. Annals of Thoracic Surgery. https://doi.org/10.1016/j.athoracsur.2017.06.078

Pham, D. L., Xu, C., & Prince, J. L. (2000). A survey in current methods in medical image processing. Annual Review of Biomedical Engineering. https://doi.org/10.1146/annurev.bioeng.2.1.315

Pinotti, K. F., Cataneo, D. C., Rodrigues, O. R., & Cataneo, A. J. M. (2018). Closure of the sternum with anchoring of the steel wires: Systematic review and meta-analysis. In Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.1016/j.jtcvs.2018.02.033

Raman, J., Lehmann, S., Zehr, K., De Guzman, B. J., Aklog, L., Garrett, H. E., MacMahon, H., Hatcher, B. M., & Wong, M. S. (2012). Sternal closure with rigid plate fixation versus wire closure: A randomized controlled multicenter trial. Annals of Thoracic Surgery, 94(6), 1854–1861. https://doi.org/10.1016/j.athoracsur.2012.07.085

Rho, J. Y., Hobatho, M. C., & Ashman, R. B. (1995). Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering and Physics. https://doi.org/10.1016/1350-4533(95)97314-F

Robicsek, F., Daugherty, H. K., & Cook, J. W. (1977). The prevention and treatment of sternum separation following open-heart surgery. The Journal of Thoracic and Cardiovascular Surgery.

Sackett DL, Hayes RB, T. P. (1985). Deciding on the best therapy. In T. P. Sackett DL, Hayes RB (Ed.), Clinical epidemiology. A basic science for clinical medicine (First, pp. 171–197). Little, Brown and company.

Schimmer, C., Reents, W., & Elert, O. (2006). Primary closure of median sternotomy: A survey of all German surgical heart centers and a review of the literature concerning sternal closure technique. In Thoracic and Cardiovascular Surgeon (Vol. 54, Issue 6, pp. 408–413). https://doi.org/10.1055/s-2006-924193

Scuffham, P. A., Nikles, J., Mitchell, G. K., Yelland, M. J., Vine, N., Poulos, C. J., Pillans, P. I., Bashford, G., Del Mar, C., Schluter, P. J., & Glasziou, P. (2010). Using N-of-1 trials to improve patient management and save costs. Journal of General Internal Medicine. https://doi.org/10.1007/s11606-010-1352-7

Sharma, R., Puri, D., Panigrahi, B. P., & Virdi, I. S. (2004). A modified parasternal wire technique for prevention and treatment of sternal dehiscence. Annals of Thoracic Surgery, 77(1), 210–213. https://doi.org/10.1016/S0003-4975(03)01339-0

Sylvester, A. D., & Kramer, P. A. (2018). Young’s Modulus and Load Complexity: Modeling Their Effects on Proximal Femur Strain. Anatomical Record. https://doi.org/10.1002/ar.23796

Taddei, F., Schileo, E., Helgason, B., Cristofolini, L., & Viceconti, M. (2007). The material mapping strategy influences the accuracy of CT-based finite element models of bones: An evaluation against experimental measurements. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2006.10.014

Tosoni, G. M., Lurie, A. G., Cowan, A. E., & Burleson, J. A. (2006). Pixel intensity and fractal analyses: detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology. https://doi.org/10.1016/j.tripleo.2005.08.020

Veeramachaneni, N. (2018). The optimal sternal closure technique: Still elusive. In Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.1016/j.jtcvs.2018.03.023

Viceconti, M., Bellingeri, L., Cristofolini, L., & Toni, A. (1998). A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering and Physics. https://doi.org/10.1016/S1350-4533(97)00049-0

Wijayathunga, V. N., Jones, A. C., Oakland, R. J., Furtado, N. R., Hall, R. M., & Wilcox, R. K. (2008). Development of specimen-specific finite element models of human vertebrate for the analysis of vertebroplasty. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. https://doi.org/10.1243/09544119JEIM285

Wirtz, D. C., Schiffers, N., Forst, R., Pandorf, T., Weichert, D., & Radermacher, K. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics. https://doi.org/10.1016/S0021-9290(00)00069-5

Downloads

Published

2022-09-26

How to Cite

Gandhi, H. S. (2022). In-silico patient-specific and patient-appropriate engineering method to judiciously select an ameliorative implant design in a single-patient using finite element-n-of-1 (fe-n-of-1) empirical test analysis to reconstruct mid-sagittal osteochondrotomy of the sternum following cardiac surgery. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 22, 122–146. https://doi.org/10.24297/ijct.v22i.9288

Issue

Section

Research Articles

Most read articles by the same author(s)