Six Reasons to Discard Wave Particle Duality: Thereby Opening New Territory for Young Scientists to Explore

Authors

DOI:

https://doi.org/10.24297/jac.v18i.8948

Keywords:

entanglement, Bell test experiments, quantum chemistry, Bi-Rays

Abstract

Wave particle duality is a cornerstone of quantum chemistry and quantum mechanics (QM). But there are experiments it cannot explain, such as a neutron interferometer experiment. If QM uses Ψ as its wavefunction, several experiments suggest that nature uses -Ψ instead. The difference between -Ψ and +Ψ is that they describe entirely different pictures of how nature is organized. For example, with -Ψ quantum particles follow waves backwards, which is incompatible with wave-particle-duality, obviously. We call the -Ψ proposal the Theory of Elementary Waves (TEW). It unlocks opportunities for young scientists with no budget to conduct the basic research for a new, unexplored science. This is a dream come true for young scientists: the discovery of uncharted territory. We show how TEW explains the double slit, Pfleegor Mandel and Davisson Germer experiments, Feynman diagrams and the Bell test experiments. We provide innovative research designs for which -Ψ and +Ψ would predict divergent outcomes. What makes QM so accurate is its probability predictions. But Born’s law would yield the same probabilities if it were changed from P = |+Ψ |2 to P = |-Ψ |2. This article is accompanied by a lively YouTube video, “6 reasons to discard wave particle duality.”

Downloads

Download data is not yet available.

References

Aspect, Bell’s inequality test: more ideal than ever. Nature 398, 189-190 (1999). DOI: 10.1038/18296

Aspect, P. Grangier, and G. Roger. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken- experiment. Physical Review Letters, 49, 91-94, 1982. DOI: 10.1103/PhysRevLett.49.91

Aspect, P. Grangier, and G. Roger. Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters, 47, 460-463, 1981. DOI: 10.1103/PhysRevLett.47.460

J. Baggott, The Quantum Story, Oxford University Press, 2011. ISBN:978–0-19-956684-6

A. Becker, What Is Real? Basic Books, 2018. ISBN:978–0-19-956684-6

J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics 1, 195-200, 1964. DOI: 10.1103/PhysicsPhysiqueFizika.1.195

J. S. Bell, "Bertlmann's socks and the nature of reality, Journal de Physique, vol. 42, 1981, pp. C2-C41. DOI: 10.1051/jphyscol:1981202

J. S. Bell, "The paradox of Einstein, Podolsky and Rosen: action at a distance in quantum mechanics?," Speculations in Science and Technology, vol. 10, pp. 269–285 (1987).

H. Bernien, A. E. Dréau, A. Reiserer, et. al., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature (2015) http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15759.html DOI: 10.1038/nature15759

M. Born, “Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37,” pp. 863-867, 1926. DOI: 10.1007/BF01397477

M. Born, “On the quantum mechanics of collisions,” in J. A. Wheeler and W. H. Zurek (eds.), Quantum Theory and Measurement, Princeton, pp.50-55, 1983. ISBN 978-0-691-08316-2.

J. H. Boyd, “The Periodic Table needs negative orbitals in order to eliminate quantum weirdness,” Journal of Advances in Chemistry, vol. 17, pp.88-125, 2020. DOI: 10.24297/jac.v17i.8865

J. H. Boyd, “There are two solutions to the equations of Feynman’s Quantum Electrodynamics (QED),” Journal of Advances in Physics, vol. 18, pp.39-57, 2020. DOI: 10.24297/jap.v18i.8831.

J. H. Boyd, “If the propagator of QED were reversed, the mathematics of Nature would be much simpler,” Journal of Advances in Mathematics, vol. 18, pp. 129-153, 2020. DOI: 10.24297/jam.v18i.8746

J. H. Boyd, “A tiny, counterintuitive change to the mathematics of the Schrödinger wave packet and Quantum ElectroDynamics could vastly simplify how we view Nature,” Journal of Advances in Physics, vol. 17, pp. 169-203, 2020. DOI: 10.24297/jap.v17i.8696

J. H. Boyd, “New Schrödinger wave mathematics changes experiments from saying there is, to denying there is quantum weirdness,” Journal of Advances in Mathematics, vol. 18, pp. 82-117, 2020. DOI: 10.24297/jap.v17i.8696

J. H. Boyd, “Decrypting the central mystery of quantum mathematics: Part 3. A non-Einstein, non-QM view of Bell test experiments,” Journal of Advances in Mathematics, vol. 17, pp. 315-331, 2019. DOI: 10.24297/jam.v17i0.8490

J. H. Boyd, “The quantum world is astonishingly similar to our world,” Journal of Advances in Physics, vol. 14, pp. 5598-5610, 2018. DOI: 10.24297/jap.v14i2.7555

J. H. Boyd, “A paradigm shift, Part 2: A new local realism explains Bell test,” Journal of Advances in Mathematics, vol. 10, pp. 3828-3839, 2015. DOI: 10.24297/jam.v10i9.1884

J. H. Boyd, “A paradigm shift, Part 4: Quantum computers and the local realism of all 4 Bell states,” Journal of Advances in Mathematics, vol. 11, pp. 5476-5493, 2015. DOI: 10.24297/jam.v11i7.1224

J. H. Boyd, “Re-thinking Alain Aspect’s 1982 Bell test experiment with delayed choice,” Physics Essays, vol. 26, pp. 582-591, 2013. DOI: 10.4006/0836-1398-26.1.100 10.4006/0836-1398-26.4.582

J. H. Boyd, “Decrypting the central mystery of quantum mathematics: Part 1. The double slit experiment,” Journal of Advances in Mathematics, 2 vol. 17, pp. 255-282, 2019. DOI: 10.24297/jam.v17i0.8475

J. H. Boyd, “Decrypting the central mystery of quantum mathematics: Part 2. A mountain of empirical data supports TEW,” Journal of Advances in Mathematics, vol. 17, pp. 283-314, 2019. DOI: 10.24297/jam.v17i0.8489

J. H. Boyd, “Decrypting the central mystery of quantum mathematics: Part 3. A non-Einstein, non-QM view of Bell test experiments,” Journal of Advances in Mathematics, vol. 17, pp. 315-331, 2019. DOI: 10.24297/jam.v17i0.8490

J. H. Boyd, “Decrypting the central mystery of quantum mathematics: Part 4. In what medium do Elementary Waves travel?” Journal of Advances in Mathematics, vol. 17, pp. 332-351, 2019. DOI: 10.24297/jam.v17i0.8491

J. H. Boyd, “The quantum world is astonishingly similar to our world,” Journal of Advances in Physics, vol. 14, 5598-5610, 2018. DOI: 10.24297/jap.v14i2.7555

J. H. Boyd, “The von Neumann and double slit paradoxes lead to a new Schrödinger wave mathematics,” Journal of Advances in Physics, vol.14, 5812-5834, 2018. doi.org/10.24297/jap.v14i3.7820

J. H. Boyd, “The Boyd Conjecture,” Journal of Advances in Physics, vol. 13, 4830-4837, 2017. DOI: 10.24297/jap.v13i4.6038

J. H. Boyd, “A symmetry hidden at the center of quantum mathematics causes a disconnect between quantum math and quantum mechanics,” Journal of Advances in Mathematics, vol. 13, 7379-7386, 2017. DOI: 10.24297/jam.v13i4.6413

J. H. Boyd, “Paul Dirac’s view of the Theory of Elementary Waves,” Journal of Advances in Physics, vol. 13, 4731-4734, 2017. DOI: 10.24297/jap.v13i3.5921

J. H. Boyd, “A paradigm shift, Part 1: The Theory of Elementary Waves (TEW),” Journal of Advances in Mathematics, vol. 10, 3828-3839, 2015. DOI: 10.24297/jam.v10i9.1908

J. H. Boyd, “A paradigm shift, Part 2: A new local realism explains Bell test,” Journal of Advances in Mathematics, vol. 10, 3828-3839, 2015. DOI: 10.24297/jam.v10i9.1884

J. H. Boyd, “A paradigm shift, Part 3: A mirror image of Feynman’s quantum electrodynamics (QED),” Journal of Advances in Mathematics, vol. 11, 3977-3991, 2015. DOI: 10.24297/jam.v11i2.1283

J. H. Boyd, “A paradigm shift, Part 4: Quantum computers and the local realism of all 4 Bell states,” Journal of Advances in Mathematics, vol. 11, 5476-5493, 2015. DOI: 10.24297/jam.v11i7.1224

J. H. Boyd, “The Theory of Elementary Waves eliminates wave-particle-duality,” Journal of Advances in Physics, vol. 7, 1916-1922, 2015. DOI: 10.24297/jap.v7i3.1576

J. H. Boyd, “A new variety of local realism explains a Bell test experiment,” Journal of Advances in Physics, vol. 8, 2051-2058, 2015. DOI: 10.24297/jap.v8i1.1541

J. H. Boyd, “A proposed physical analog of a quantum amplitude,” Journal of Advances in Physics, vol. 10, pp.2774-2783, 2015. DOI: 10.24297/jap.v10i3.1324

J. H. Boyd, “Re-thinking a delayed choice quantum eraser experiment,” Physics Essays, vol. 26, pp.100-109, 2013. DOI: 10.4006/0836-1398-26.1.100

J. H. Boyd, “Re-thinking Alain Aspect’s 1982 Bell test experiment with delayed choice,” Physics Essays, vol. 26, pp.582-591, 2013. DOI: 10.4006/0836-1398-26.1.100 10.4006/0836-1398-26.4.582

J. H. Boyd, “Rethinking a Wheeler delayed choice gedanken experiment,” Physics Essays, vol. 25, pp.390-396, 2012. DOI: 10.4006/0836-1398-25.3.390

J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, “Proposed experiment to test local hidden-variable theories.” Physical Review Letters 23, 880-884, 1969. DOI: 10.1103/PhysRevLett.23.880

B. J. Davisson and L. Germer, “Reflection of electrons by a crystal of nickel,” Nature, vol. 119, pp.558-560, 1927. DOI: 10.1038/119558a0

B. J. Davisson, “The diffraction of electrons by a crystal of nickel,” Bell System Technical Journal, vol. 7, pp. 90-105, 1928. DOI: 10.1002/j.1538-7305.1928.tb00342.x

B. J. Davisson, “Are electrons waves?” Franklin Institute Journal, vol. 205, 597, 1928. DOI: 10.1016/S0016- 0032(28)90979-5

R. P. Feynman, Feynman Lectures on Physics, vol. 2. New York: Basic Books, c1964. ISBN-13: 978-0-4650294-0

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Mineola, NY: Dover Publications, c1965. ISBN-13 978-0-468-47722-0.

G. Gabrielse, D. Hanneke, T. Kinoshita, et. al., “New determination of the fine structure constant from the electron g value and QED,” Physical Review Letters, 97, 030802 (2006). DOI: 10.1007/BF00670751

R. Galchen and D.Z. Albert, “Was Einstein wrong?” Scientific American, vol. 300, pp. 32-39, 2009. DOI: 10.1038/scientificamerican0309-32.

M. Giustina, M.A.M. Versteegh, S. Wengerowsky, et. al. “Significant-loophole-free test of local realism with entangled photons.” Physical Review Letters 115, 250401 (2015). DOI: 10.1103/PhysRevLett.115.250401

M. Giustina, “Significant-loophole-free test of local realism with entangled photons.” Rotman Institute of Philosophy, 2016. https://www.youtube.com/watch?v=tgoWM4Jcl-s

M. Giustina, M.A.M. Versteegh, S. Wengerowsky, et. al. “Significant-loophole-free test of local realism with entangled photons.” Archiv.org. 2015. arXiv:1511.03190v2.

A. Giustina, A. Mech, S. Ramelow, et. al., “Bell violation using entangled photons without the fair-sampling assumption,” Nature, vol. 497, pp. 227-230, 2013. DOI: 10.1038/nature12012

B. Hensen, H. Bernien, A. E. Dréau, et.al., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, (2015), DOI: 10.1038/nature15759.

J. Hofmann, M. Krug, N. Ortegel, et. al., “Heralded entanglement between widely separated atoms,” Science 337, 72-75 (2012). DOI: 10.1126/science.1221856

H. Kaiser, R. Clothier, S.A. Werner, H. Rauch and H. Wölwitsch, "Coherence and spectral filtering in neutron interferometry," Physical Review A, vol. 45, 31-42, 1992. DOI: 10.1103/PhysRevA.45.31

T. S. Kuhn, The Structure of Scientific Revolutions, Chicago: University of Chicago Press, 1970. ISBN 978-0-226-45803-8.

P. G. Kwiat, K. Mattle, H. Weinfurter, et. al., "New high-intensity source of polarization-entangled photon pairs," Physical Review Letters, 75 (#24) pp. 4337-4341 (1995). DOI: 10.1103/PhysRevLett.75.4337

B. Lim, “Bell test: disproving local realism,” 2017. https://www.youtube.com/watch?v=UbNmV9CWbH0

L. E. Little, “Theory of Elementary Waves,” Physics Essays, vol. 9, pp.100-134, 1996. https://doi.org/10.4006/1.3029212

N. D. Mermin, "Is the moon there when nobody looks? Reality and the quantum theory," Physics Today, 38, 38-47 (1985). DOI: 10.1063/1.880968

W. A. Miller and J. A. Wheeler, “Delayed choice experiments and Bohr’s elementary quantum phenomenon,” in ed. S. Makefuchi, Proceedings of the International Symposium Foundations of Quantum Mechanics, (Hitachi Ltd., Kokubunji, Tokyo 1983), pp.140-152.

R. L. Pfleegor and L. Mandel, “Interference of independent photon beams,” Physical Review, vol. 159, pp.1084-1088, 1967. DOI: 10.1103/PhysRev.159.1084

R. L. Pfleegor and L. Mandel, “Further experiments on interference of independent photon beams at low light levels,” Journal of the Optical Society of America, vol. 58, pp.946-950, 1968. DOI: 10.1364/JOSA.58.000946

R. Resnick, “Quantum Mechanics 10b Bell’s inequality,” ViaScience, 2014. https://www.youtube.com/watch?v=8UxYKN1q5sI

C. Salart, A. Baas, J. A. W. van Houwelingen, N. Gisin, and H. Zbinden, “Spacelike separation in a Bell test assuming gravitationally induced collapses,” Physical Review Letters 100, 220404-1 to 220404-4 (2008). DOI: 10.1103/PhysRevLett.100.220404

A. Wegener, The Origin of Continents and Oceans, translated by John Biram, New York, Dover Publications Inc.1966, Library of Congress Catalog Card Number: 66-28270.

G. Weihs, T. Jennewein, C. Simon, et. al., “Violation of Bell's inequality under strict Einstein locality conditions,” Physical Review Letters 81, 5039 (1998). DOI: 10.1103/PhysRevLett.81.5039

A. Yurke and B. Stoler, Einstein-Podolsky-Rosen effects from independent particle sources, Physical Review Letters 68, 1251-1254 (1992). DOI: 10.1103/PhysRevLett.68.1251

S. A. Werner, R. Clothier, H. Kaiser, et.al., “Spectral filtering in neutron interferometry,” Physical Review Letters, vol. 67, pp.683-686, 1991. DOI: 10.1103/PhysRevLett.67.683

M. Żukowski, Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-ready-detectors” Bell experiment via entanglement swapping. Physical Review Letters 71, 4287–4290 (1993). DOI: 10.1103/PhysRevLett.71.4287

Downloads

Published

2021-02-14

How to Cite

Boyd, J. (2021). Six Reasons to Discard Wave Particle Duality: Thereby Opening New Territory for Young Scientists to Explore. JOURNAL OF ADVANCES IN CHEMISTRY, 18, 1–29. https://doi.org/10.24297/jac.v18i.8948

Issue

Section

Articles