Characterization of Natural Fiber Extracted from Sesbania rostrata: An Alternative Potential for Synthetic Fibers

Authors

  • K. Raja K.S. Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu, India.
  • P. Senthilkumar K.S.R. College of Engineering, Tiruchengode 637215, Tamil Nadu, India.
  • G. Nallakumarasamy Excel Engineering College, Komarapalayam 637 303, Tamil Nadu, India.
  • T. Natarajan K.S. Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu, India

DOI:

https://doi.org/10.24297/jac.v12i16.840

Keywords:

Mechanical Engineering, Chemistry, Composites

Abstract

Enriching natural materials is essential for developing eco-friendly composites in structural and automotive applications. The aim of this work is to extensively characterize new natural cellulosic fiber extracted from Sesbania rostrata stem.       S. rostrata fibers (SRFs) show cellulose content of 64.36 % with a range of tensile strength from 156 to 460 MPa and have a low density of 1.365 g/cm3. SRFs has crystallinity index of 58.41%, which is comparable with that of other common natural fibers. Furthermore, SRFs can resist the degradation of cellulose up to 246°C, which is revealed by thermogravimetric analysis. 

Downloads

Download data is not yet available.

Author Biographies

K. Raja, K.S. Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu, India.

Department of Mechanical Engineering,

P. Senthilkumar, K.S.R. College of Engineering, Tiruchengode 637215, Tamil Nadu, India.

Department of Mechanical Engineering,

G. Nallakumarasamy, Excel Engineering College, Komarapalayam 637 303, Tamil Nadu, India.

Department of Mechanical Engineering,

T. Natarajan, K.S. Rangasamy College of Technology, Tiruchengode 637215, Tamil Nadu, India

Department of Mechanical Engineering,

References

1. Sathishkumar, T. P., S. Satheeshkumar, and J. Naveen. 2014. Glass fiber-reinforced polymer composites – a review. J. Reinf. Plast. Compos. 33(13): 1258–1275.
2. Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9): 1259–1264.
3. Nirmal, U., J. Hashim, S. T. Lau, Y. My, and B. Yousif. 2012. Betelnut fibres as an alternative to glass fibres to reinforce thermoset composites: a comparative study. Text. Res. J. 82(11): 1107–1120.
4. Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Review: raw natural fiber–based polymer composites. Int. J. Polym. Anal. Charact. 19(3): 256–271.
5. Pickering, K. L., M. G Aruan Efendy, and T. M. Le. 2015. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 83: 98–112.
6. Shuguang, J. I. A. N., S. H. E. N. Weijun, and Y. A. N. G. Zhongyi. 2009. Enhanced adaptability of Sesbania rostrata to pb/zn tailings via stem nodulation. J. Environ. Sci. 21(8): 1135–1141.
7. Saraswati, R., T. Matoh, and J. Sekiya. 1992. Nitrogen-fixation of Sesbania rostrata – contribution of stem nodules to nitrogen acquisition. Soil Sci. Plant Nutr. 38(4): 775–780.
8. Santhanam, K., A. Kumaravel, S. S. Saravanakumar, and V. P. Arthanarieswaran. 2016. Characterization of new natural cellulosic fiber from the Ipomoea staphylina plant. Int. J. Polym. Anal. Charact. 21( 3): 267–274.
9. Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110: 423–429..
10. Saravanan, N., P.S.Sampath, T.A.Sukantha and T.Natarajan. 2016. Extraction and Characterization of New Cellulose Fiber from the Agrowaste of Lagenaria Siceraria (Bottle Guard) Plant. J. Adv. Chem. 12(09):4382-4388.
11. Conrad, C. M. and M. Carl. 1944. Determination of wax in cotton fiber: a new alcohol extraction method. Ind. Eng. Chem. Anal. Ed. 16(12): 745–748.
12. Binoj, J. S., R. Edwin Raj, V. S. Sreenivasan, and G. Rexin Thusnavis. 2016. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian areca fruit husk fibers (Areca catechu L.) as potential alternate for hazardous synthetic fibers. J. Bionic Eng. 13(1): 156–165.
13. Sathishkumar, T. P., P. Navaneethakrishnan, S. Shankar, and R. Rajasekar. 2013.Characterization of new cellulose Sansevieria ehrenbergii fibers for polymer composites. Compos. Interf. 20(80): 575–593.
14. Vignesh, V., A. N. Balaji, and M. K. V. Karthikeyan. 2016. Extraction and characterization of new cellulosic fibers from Indian mallow stem: an exploratory investigation. Int. J. Polym. Anal. Charact. DOI.10.1080/1023666X.2016.1175206.
15. Prithiviraj, M., R. Muralikannan, P. Senthamaraikannan, and S. S. Saravanakumar. 2016. Characterization of new natural cellulosic fiber from the Perotis indica plant. Int. J. Polym. Anal. Charact. DOI.10.1080/1023666X.2016.1202466.
16. Kathiresan, M., P. Pandiarajan, P. Senthamaraikannan, and S. S. Saravanakumar. 2016. Physicochemical properties of new cellulosic Artisdita hystrix leaf fiber. Int. J. Polym. Anal. Charact. DOI.10.1080/1023666X.2016.1194636.
17. Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Characterization of new natural cellulosic fiber from Acacia leucophloea bark. Int. J. Polym. Anal. Charact. 20(4): 367–376.
18. Keller, A., M. Leupin, V. Mediavilla, and E. Wintermantel. 2001. Influence of the growth stage of industrial hemp on chemical and physical properties of the fibers. Ind. Crops Prod. 13: 35–48.
19. Fidelis, A., M. Ernestina, and T. V. Castro Pereira. 2013. The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2(2): 149–157.
20. Natarajan, T., A. Kumaravel, and R. Palanivelu.2016. Extraction and characterization of natural cellulosic fiber from Passiflora foetida stem. Int. J. Polym. Anal. Charact. DOI.10.1080/ 1023666X.2016.1168636.
21. Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 43(8): 3044–3052.
22. Nagaraja Ganesh, B., and R. Muralikannan.2016. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. Int. J. Polym. Anal. Charact. 21(3): 259–266.
23. Nagaraja Ganesh, B., and R. Muralikannan. 2016. Physico-chemical, thermal, and flexural characterization of Cocos nucifera fibers. Int. J. Polym. Anal. Charact. 21(3): 244–250.
24. Mayandi, K., N. Rajini, P. Pitchipoo, JT Winowlin Jappes, and A. Varada Rajulu. 2016. Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. Int. J. Polym. Anal. Charact. 21(2): 175–183.
25. Segal, L. G. J. M. A., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10): 786–794.
26. French, A. D., and M. S. Cintrón. 2013. Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1): 583–588.
27. Kommula, V. P., K. Obi Reddy, M. Shukla, T. Marwala, E. V. Subba Reddy, and A. Varada Rajulu. 2016. Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from napier grass. Int. J. Polym. Anal. Charact. 20(1): 18–28.
28. Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum l. Carbohydr. Polym. 134: 429–437.

Downloads

Published

2016-12-16

How to Cite

Raja, K., Senthilkumar, P., Nallakumarasamy, G., & Natarajan, T. (2016). Characterization of Natural Fiber Extracted from Sesbania rostrata: An Alternative Potential for Synthetic Fibers. JOURNAL OF ADVANCES IN CHEMISTRY, 12(16), 4930–4937. https://doi.org/10.24297/jac.v12i16.840

Issue

Section

Articles