New Compounds Measured by Fluorescence Spectroscopy. Amino-Fluorene-Thiophene Derivatives to Be Proposed as Polarity Indicators.

Authors

  • Jean Christian Bernède University of Nantes
  • Ortega Eduardo
  • Andrés Mauricio Ramirez
  • Cattin Linda
  • Louarn Guy
  • Diaz Fernando
  • Del Valle Maria Angelica

DOI:

https://doi.org/10.24297/jac.v15i1.7339

Keywords:

Solvatochromism, polarity indicator, aminofluorene thiophene derivatives, fluorometry

Abstract

The solvatochromic effect is high in conjugate compounds and easy to observe by the colour change emitted when the solutions are exposed to UV light. It was found in a series of aminofluorene thiophene derivatives, previously synthesized, that irradiating at different wavelengths, the same pattern is obtained, i.e. a dual behaviour in the solvatochromism of the studied compounds. For each one, a bathochromic and hypsochromic effect exists, in polar and nonpolar solvents, respectively. Wavelength vs. polarity index plots clearly showed the abovementioned dual behaviour as well as the improved linearity in its plots. Amidst the wavelengths at which each compound is excited in each solvent, 280 nm was selected as the fixed wavelength for the measurements; (E)-9,9-diethyl-N-hexyl-N-phenyl-7-(2-(thiofen-2-yl)vinyl)-9H-fluoren-2-amine (M6-6) exhibits better linearity as compared to the other studied compounds, being the best to be proposed as polarity sensor or indicator.

Downloads

Download data is not yet available.

References

[1] Keefe, M. H., Benkstein, K. D. and Hupp, J. T. 2000. Luminescent sensor molecules based on coordinated metals: a review of recent developments.Coordin. Chem. Rev. 205: 201–228.
[2] Shortreed, M., Kopelman, R.,Kuhn, M. and Hoyland, B. 1996.Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements.Anal. Chem. 68: 1414-1418.
[3] Bakker, E. 2004.Electrochemical Sensors.Anal. Chem. 76: 3285-3298.
[4] Huang, J.,Virji, S.,Weiller,B. H. and Kaner, R.B. 2003.Polyaniline Nanofibers:  Facile Synthesis and Chemical Sensors.J. Am. Chem. Soc. 125: 314-315.
[5] Biesaga, M., Pyrzynska, K. and Trojanowicz, M. 2000.Porphyrins in analytical chemistry. A review.Talanta. 51: 209–224
[6] Timmer, B., Olthuis, W. andvan den Berg,A. 2005.Ammonia sensors and their applications—a review.Sens Actuators B Chem. 107: 666–677.
[7] Shao,Y., Wang,J., Wu, H.,Liu, J.,Aksay, I. A. andLin, Y.2010. Graphene Based Electrochemical Sensors and Biosensors: A Review.Electroanalysis. 22: 1027 – 1036.
[8] Lohani, C. R. and Lee, K.2010. The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors.Sens Actuators B Chem. 143: 649–654.
[9] Wang, H. Li, Y. Xu, S.Li, Y.Zhou, C.Fei, X.Sun, L. Zhang, C. Li, Y.Yang, Q.and Xu, X. 2011.Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg2+ in aqueous solution and for live cell imaging.Org. Biomol. Chem. 9: 2850-2855.
[10] Kudo, K. Momotake, A.Kanna, Y. Nishimura, Y. and Arai, T. 2011.Development of a quinoxaline-based fluorescent probe for quantitative estimation of protein binding site polarity.Chem. Commun. 47: 3867–3869.

[11] Liu, G. Zhou, W. Zhang, J. and Zhao, P. 2012. Polymeric temperature and pH fluorescent sensor synthesized by reversible addition–fragmentation chain transfer polymerization.J. Polym. Sci. A: Polym. Chem. 50: 2219–2226.
[12] Ma, D. Li, B. Zhou, X. Zhou, Q. Liu, K. Zeng, G. Li, G. Shiand, Z. and Feng, S. 2013.A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperatura. Chem. Commun. 49: 8964-8966.
[13] Zhou, Z. Du, Y. and Dong, S. 2011. DNA–Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules.Biosens. Bioelectron. 28: 33–37.
[14] Kálai, A. Hideg, É. Ayaydin, F. and Hideg, K. 2013. Synthesis and potential use of 1,8-naphthalimidetype 1O2 sensor molecules.Photochem. Photobiol. Sci. 12: 432-438.
[15] Xing, Y. Lin, H. Wang, F. and Lu,P. 2006. An efficient D–A dyad for solvent polarity sensor.Sens Actuators B Chem. 114: 28–31.
[16] Higginbotham, H. F. Cox, R. P. Sandanayake, S. Graystone, B. A. Langford, S. J. and Bell, T. D. M. 2013. A fluorescent “2 in 1” proton sensor and polarity probe based on core substituted naphthalene diimide.Chem. Commun. 49: 5061-5063.
[17] Ortega , E. Montecinos , R. Cattin , L. Díaz , F.R. del Valle , M.A. and Bernède, J.C. 2017. Synthesis, characterization and photophysical-theoretical analysis of compounds A-p-D. 1. Effect of alkyl-phenyl substituted amines in photophysical properties. J. Mol. Struc. 1141: 615-623.
[18] Ortega, E. Ramirez, A. Cattin, L. Díaz, F.R. del Valle, M.A. and Bernède, J.C. 2017. Synthesis, characterization and photo physical-theoretical analysis of D-p-A compounds. 2. Chain length effect through even-odd effect on the photophysical properties. Dyes and Pigments. 147: 75-82.
[19] Liptay, W. 1969.Electrochromism and Solvatochromism.Angew. Chem. Int. Edit.8:177-188.
[20] Yam, V. W. Wong, K. M. and Zhu, N. 2002.Solvent-Induced Aggregation through Metal•••Metal/π•••π Interactions:  Large Solvatochromism of Luminescent Organoplatinum(II) Terpyridyl Complexes. J. Am. Chem. Soc. 124: 6506-6507.
[21] Buncel, E. and Rajagopa, S. 1990. Solvatochromism and Solvent Polarity Scales. Acc. Chem. Res. 23:226-231.
[22] Gierschner, J. Mack, H. Lüer, L.and Oelkrug, D. 2002. Fluorescence and absorption spectra of oligophenylenevinylenes: Vibronic coupling, band shapes, and solvatochromism.J. Chem. Phys. 19: 8596-8609.
[23] Reichardt, C. 1992. Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chem. Soc. Rev. 21: 147-153.
[24] Shen, X. Y. Wang,Y. J. Zhao, E. Yuan, W. Z. Liu, Y. Lu, P. Qin, A. Ma, Y. Sun, J. Z. andTang, B. Z. 2013.Effects of Substitution with Donor–Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism.J. Phys. Chem. C. 117: 7334−7347.
[25] Niko, Y. Cho, Y. Kawauchi, S. andKonishi, G. 2014.Pyrene-based D–π–A dyes that exhibit solvatochromism and high fluorescence brightness in apolar solvents and water.RSC Adv. 4: 36480-36484.
[26] Wei, Z. Gu, Z. Arvapally, R. K. Chen, Y. McDougald, R. N. Ivy, J. F. Yakovenko, A. A. Feng, D. Omary, M. A. and Zhou, H. 2014. Rigidifying Fluorescent Linkers by Metal−Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement.J. Am. Chem. Soc., 136: 8269−8276.
[27] Hidalgo, M. Rivelino, R. and Canuto, S. 2014.
Origin of the Red Shift for the Lowest Singlet π → π* Charge-Transfer Absorption of p-Nitroaniline in Supercritical CO2.J. Chem. Theory Comput. 10: 1554−1562.
[28] Qu, F. Dou, L. L. Li, N. B. and Luo, H. Q. 2013.Solvatofluorochromism of polyethyleneimine-encapsulated Ag nanoclusters and their concentration-dependent fluorescence.J. Mater. Chem. C. 1: 4008-4013.
[29] Clegg, R. M. Murchiet, A. I. H. Zechel, A. and Lilleyt, D. M. J. 1993. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer.Proc. Natl. Acad. Sci. U.S.A. 90. 2994-2998.
[30] Werner, T. C. and Hoffman, R. M.1973. Relation between an Excited State Geometry Change and the Solvent Dependence of 9-Methyl Anthroate Fluorescence.J.Phys. Chem. 77:1611-1615.
[31] Singhi, M. K. Pal, H. Bhasikutta, A. C. andSapre, A. V. 1998. Dual solvatochromism of Neutral Red.Photochem. Photobiol.68: 32-38.

Downloads

Additional Files

Published

2018-05-03

How to Cite

Bernède, J. C., Eduardo, O., Ramirez, A. M., Linda, C., Guy, L., Fernando, D., & Maria Angelica, D. V. (2018). New Compounds Measured by Fluorescence Spectroscopy. Amino-Fluorene-Thiophene Derivatives to Be Proposed as Polarity Indicators. JOURNAL OF ADVANCES IN CHEMISTRY, 15(1), 6150–6172. https://doi.org/10.24297/jac.v15i1.7339

Issue

Section

Articles