The Ongoing Study of the Chemistry of the Marine Inhabitants of The Ramsar Site of Port Royal, Jamaica

Authors

  • Winklet Authrine Gallimore The University of the West Indies, Mona Campus

DOI:

https://doi.org/10.24297/jac.v15i1.7297

Keywords:

Port Royal, Mangrove, Reef, Marine, Chemistry

Abstract

Research efforts to examine the chemistry of marine organisms collected from the Ramsar site of Port Royal, Jamaica, has led to the isolation of a range of compounds as diverse as the species from which they were derived. Six sponges, two algal species, one ascidian and one soft coral collected from the mangrove area and the shallow coastal reefs were studied to yield compounds including steroids, aromatic compounds and terpenoids.

Downloads

Download data is not yet available.

References

[1] M. Webber, Biodiversity of Jamaican Mangrove Areas, Volumes 1-7, Environmental Foundation of Jamaica (EFJ) Project.
[2] J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro, M. R. Prinsep, ‘Marine Natural Products - NPR-2016-SI’, Nat. Prod. Rep 2016, 33, 382-431. doi: 10.1039/c5np00156k.
[3] R. Montaser, H. Luesch, ‘Marine Natural Products: a New Wave of Drugs?’, Future Med. Chem 2011, 3, 1475–1489. doi: 10.4155/fmc.11.118.
[4] J. Jimeno, G. Faircloth, J. M. Fernández Sousa-Faro, P. Scheuer, K. Rinehart, ‘New Marine Derived Anticancer Therapeutics ─ A Journey from the Sea to Clinical Trials’, Mar. Drugs 2004, 2, 14-29. PMCID: PMC3783878.
[5] E. M. Gordon, K. K. Sankhala, N.Chawla, S. P. Chawla, ‘Trabectedin for Soft Tissue Sarcoma: Current Status and Future Perspectives’, Adv. Ther 2016, 33, 1055-1071. doi: 10.1007/s12325-016-0344-3.
[6] S. K. Palanisamy, N. M. Rajendran, A. Marino, ‘Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development’, Nat. Prod. Bioprospect 2017, 7, 1–111. doi: 10.1007/s13659-016-0115-5.
[7] B. S. Davidson, ‘Ascidians: Producers of Amino Acid-derived Metabolites’, Chem. Rev. 1993, 93, 1771–1791. doi: 10.1021/cr00021a006.
[8] I. Goodbody, ‘The Ascidian Fauna of Port Royal, Jamaica I. Harbour and Mangrove Dwelling Species’, Bull. Mar. Sci 2003, 73, 457-476.
[9] K. Anjum, S. Q. Abbas, S. A. A. Shah, N. Akhter, S. Batool, S. S. Hassan, ‘Marine Sponges as a Drug Treasure’, Biomol. Ther (Seoul) 2016, 24, 347–362. doi: 10.4062/biomolther.2016.559
[10] T. A. Haystead, A. T. Sim, D. Carling, R. C. Honnor, Y. Tsukitani, P. Cohen, D. G. Hardie, ‘Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism’, Nature 1989, 337(6202), 78-81. doi:10.1038/337078a0
[11] R. T. Hill, M. Hamann, O. Peraud, N. Kasanah,. ‘Manzamine-producing Actinomycetes’ 2005, United States patent US 20050244938 A1 (University of Maryland Biotechnology Institute).
[12] T. Remya, A. Thomas, D. P. Kavlekar, P. A. LokaBharathi, ‘Marine Drugs from Sponge-Microbe Association—A Review’, Mar. Drugs 2010, 8, 1417–1468. doi:10.3390/md8041417
[13] G. J. Hechtel, ‘A Systematic Study of the Demospongiae of Port Royal, Jamaica’, Peabody Museum of Natural History, Yale University, 1965, Bulletin 20, 104 p.
[14] C. P. J. Jackson, ‘The Community of Sponges (Porifera) on Prop Roots of Rhizophora Mangle in the Port Royal Mangrove Lagoons’, M Phil Thesis 2003, Department of Life Sciences, Faculty of Pure and Applied Sciences, The University of the West Indies, Mona Campus, Jamaica.225 p.
[15] G. M. König, A. D. Wright in ‘Human Medicinal Agents from Plants’, Eds. A. D. Kinghorn and M. F. Balandrin, American Chemical Society, ACS Symposium Series, 1993,Vol. 534, pp 276–293. (Algal Secondary Metabolites and their pharmaceutical potential)
[16] M. D. Guiry, ‘How Many Species of Algae are There?’ J. Phycol. 2012, 48, 1057-1063. doi: 10.1111/j.1529-8817.2012.01222.x.
[17] H.A. Lessios, The Great Diadema antillarum Die-Off: 30 Years Later, Annu. Rev. Mar. Sci. 2016, 8, 1.1-1.17. doi: 10.1146/annurev-marine-122414-033857.
[18] E. L. Cooper, K. Hirabayashi, K. B. Strychar, P. W. Sammarco ‘Corals and Their Potential Applications to Integrative Medicine’, Evid. Based Complement. Alternat. Med, 2014, Article ID 184959, 9 p. doi.org/10.1155/2014/184959.
[19] T. Riggon, ‘The Chemistry of Eudistoma olivaceum, Halichondria melanodocia and Terpios zeteki’, M Phil Thesis 2009, The University of the West Indies, Mona Campus.
[20] R. P. Rajesh, M. Annappan, ‘Anticancer Effects of Brominated Indole Alkaloid Eudistomin H from Marine Ascidian Eudistoma viride Against Cervical Cancer Cells (HeLa)’, Anticancer Res, 2015, 35, 283-293. PMID: 25550562
21] K. L. Rinehart Jr., J. Kobayashi, G. C. Harbour, J. Gilmore, M. Mascal, T. G. Holt, L. S. Shield, F. Lafargue, ‘Eudistomins A-Q, 3-Carbolines from the Antiviral Caribbean Tunicate Eudistoma olivaceum’, J. Am. Chem. Soc 1987, 109, 3378–3387. doi: 10.1021/ja00245a031
[22] G. K. Isbister, J. N. A.Hooper, Clinical Effects of Stings by Sponges of the genus Tedania and a Review of Sponge Stings Worldwide, Toxicon 2005, 46, 782-785.
[23] C. Roye, Personal Communication.
[24] F. J. Schmitz, S. P. Gunasekera, G. Yalamanchili, M. B. Hossain, D. Van der Helm, ‘Tedanolide: a Potent Cytotoxic Macrolide from the Caribbean sponge Tedania ignis’, J. Am. Chem. Soc., 1984, 106, 7251–7252. doi: 10.1021/ja00335a069
[25] A. B. Smith, III, D. Lee, ‘Total Synthesis of (+)-Tedanolide’, J. Am. Chem. Soc., 2007, 129, 10957–10962. doi: 10.1021/ja073329u
[26] L. Scarlet, ‘Investigation of Fungal Symbionts of the Different Colour Morphs of the sponge Terpios zeteki’, Project Research Report, Department of Chemistry, The University of the West Indies, Mona, 2012.
[27] W. Bergmann, MCTigue, E. M. Low, W. M. Stokes, R. J. Feeney, ‘Marine products. XXVI. Sterols from Sponges of the Family Suberitidae’. J. Org. Chem 1949, 15, 96-105.
[28] C. Delseth, L. Tolela, P. J. Scheuer, R. J. Wells, C. Djerassi, 5α-24-Norcholestan-3β-ol and (24Z)-stigmasta-5,7,24(28)-trien-3β-ol, Two New Marine Sterols from the Pacific Sponges Terpios zeteki and Dysidea herbacea’, Helv. Chim. Acta 1979, 62, 101-109. doi.org/10.1002/hlca.19790620115
[29] K. Inoue, S. Kubota, Y. Seyama, ‘Cholestanol Induces Apoptosis of Cerebellar Neuronal Cells’, Biochem. Biophys. Res. Commun 1999, 256, 198-203. PMID: 10066446
[30] I. Novaczek, ‘A Guide to the Common Edible and Medicinal Sea Plants of the Pacific Islands’, University of South Pacific (USP) Marine Studies Programme, 2001. Community Fisheries Training Pacific Series 3A.
[31] S. O. Richards, T. A. Riggon, J. S. Smith, M. N. Thompson, K. Walford, W. A. Gallimore, ‘In Vitro Cytotoxic Activities of Crude Extracts of Eleven Jamaican Marine Specimens with Seventeen Cancer Cell Lines’, J. Chem. Biol. Phys. Sci, Section B, Nov 2016 – Jan 2017, 7,130-138.
[32] P. G. Nielsen, J. S. Carle, C. Christophersen, ‘Final Structure of Caulerpicin, a Toxin Mixture from the Green Alga Caulerpa racemosa’, Phytochemistry, 1982, 21, 1643–1645.
[33] B. C. Maiti, R. H. Thomson, M. Mahendran, The Structure of Caulerpin, a Pigment from Caulerpa Algae. J. Chem. Res. Synop. 1978, 4, 126–127.
[34] S. R. Nagaral, J. W. Osbourne, Bioactive Compounds from Caulerpa racemosa as a Potent Larvicidal and Antibacterial Agent, Front. Biol, 2014, 9, 300–305. doi: 10.1007/s11515-014-1312-4
[35] T. N. Edison, R. Atchudan, C. Kamal, Y. R. Lee, ‘Caulerpa racemosa: a Marine Green Alga for Eco-friendly Synthesis of Silver Nanoparticles and its Catalytic Degradation of Methylene Blue, Bioprocess. Biosyst. Eng 2016, 39,1401-8. doi: 10.1007/s00449-016-1616-7
[36] N. S. Lira, R. C. Montes, J. F. Tavares, M. Sobral da Silva, E. V. L. da Cunha, P. Filgueiras de Athayde-Filho, L. C. Rodrigues, C. da Silva Dias, J. M. Barbosa-Filho, ‘Brominated Compounds from Marine Sponges of the Genus Aplysina and a Compilation of Their 13C NMR Spectral Data’, Mar. Drugs, 2011, 9, 2316–2368. doi: 10.3390/md9112316
[37] W. A. Gallimore, ‘Bioactive Brominated Metabolites from the Natural Habitat and Tank-Maintained Cuttings of the Jamaican Sponge, Aplysina fistularis’, Chem. Biodiversity 2013, 10, 1055-1060.
[38] A. L. Acosta, A. D. Rodriguez, ‘11-Oxoaerothionin: A Cytotoxic Antitumor Bromotyrosine-Derived Alkaloid from the Caribbean Marine Sponge Aplysina lacunosa’, J. Nat. Prod 1992, 55, 1007-1012.doi: 10.1021/np50085a031.
[39] M. Thompson, W. Gallimore, ‘Constituents of the Jamaican sponge Iotrochota birotulata’, World J. Org. Chem 2016, 4, 13-16. doi: 10.12691/wjoc-4-1-3
[40] V. Costantino, E. Fattorusso, A. Mangoni, M. Pansini, ‘Three New Brominated and Iodinated Tyrosine Derivatives from Iotrochota birotulata, a Non-Verongida Sponge’, J. Nat. Prod.1994, 57, 1552-1556. doi: 10.1021/np50113a013
[41] P. Muralidhar, N. Krishna, M. Kumar, C. B. Rao, D. V. Rao, ‘New Sphingolipids from Marine Sponge Iotrochota baculifera’, Chem. Pharm. Bull 2003, 51, 1193-1195. doi.org/10.1002/chin.200411190
[42] P. R. Willemsen, ‘The Screening of Sponge Extracts for Antifouling Activity using a Bioassay with Laboratory-reared Cyprid Larvae of the Barnacle Balanus amphitrite’, Int. Biodeterior. Biodegrad 1994, 34, 361-373. doi.org/10.1016/0964-8305(94)90094-9
[43] M. N. Thompson, W. A. Gallimore, M. M. Townsend, N.A. Chambers, L.A.D. Williams, ‘Bioactivity of Amphitoxin, the Major Constituent of the Jamaican Sponge Amphimedon compressa’, Chem. Biodivers., 2010, 7, 1904-1910.
[44] Y. Hirata, D. Uemura, ‘Halichondrins - Antitumor Polyether Macrolides from a Marine Sponge, Pure Appl. Chem 1986, 58, 701-710. doi.org/10.1351/pac198658050701
[45] O. Ohno, T. Chiba, S. Todoroki, H. Yoshimura, N. Maru, K. Maekawa, H. Imagawa, K. Yamada, A. Wakamiya, K. Suenaga, D. Uemura, ‘Halichonines A, B, and C, Novel Sesquiterpene Alkaloids from the Marine Sponge Halichondria okadai Kadota’, Chem. Commun. 2011, 47,12453-12455. doi: 10.1039/c1cc15557a
[46] A. D. Rodriguez, “The Natural Products Chemistry of West Indian Gorgonian Octocorals’, Tetrahedron 1995, 51, 4571-4618. doi.org/10.1002/chin.199535317
[47] P.W. Jeffs, L.T. Lytle ‘Isolation of (-)-α-curcumene, (-)-β-curcumene, and (+)-β-bisabolene from gorgonian corals. Absolute configuration of (-)-β-curcumene’, Lloydia 1974, 37, 315-317.
[48] S. Campbell, J. Murray, R. Delgoda, W. Gallimore, ‘Two New Oxodolastane Diterpenes from the Jamaican Macroalga Canistrocarpus cervicornis’, Mar. Drugs 2017, 15, 150-158.
doi: 10.3390/md15060150.
[49] A. Oliveira dos Santos, E. A. Britta, E. M. Bianco, T. Ueda-Nakamura, B. P. D. Filho, R. C. Pereira, C. V. Nakamura, ‘4-Acetoxydolastane Diterpene from the Brazilian Brown Alga Canistrocarpus cervicornis as Antileishmanial Agent’, Mar. Drugs 2011, 9, 2369–2383. doi:10.3390/md9112369

Downloads

Published

2018-05-03

How to Cite

Gallimore, W. A. (2018). The Ongoing Study of the Chemistry of the Marine Inhabitants of The Ramsar Site of Port Royal, Jamaica. JOURNAL OF ADVANCES IN CHEMISTRY, 15(1), 6142–6149. https://doi.org/10.24297/jac.v15i1.7297

Issue

Section

Articles