Modification of Acetyl Acetone with Methyl Acrylate
DOI:
https://doi.org/10.24297/jac.v15i1.7122Keywords:
Michael Addition, Neat Condition, β-diketones, Heterogeneous CatalysisAbstract
Acetyl acetone was modified by a KF/alumina mediated Michael addition reaction under solventless condition with methyl acrylate. Methyl acrylate formed single and double addition with the acetyl acetone. The optimal temperature for this reaction was 393 K. The modified β-diketones were confirmed using GC-FID and GC-MS. The products could be tested as metal chelating agents and in related applications.
Downloads
Download data is not yet available.
References
[1] B. Staniszewski and W. W. Urbaniak (2009), A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione. Chem. Pap., 63 (2): 212–216.
[2] P. Tundo, P. Venturello, and E. Angeletti (1987), Alkylation Reactions of Ethyl Malonate, Ethyl Acetoacetate, and Acetylacetone by Gas-Liquid Phase-Transfer Catalysis (G.L.-P.T.C.). J. Chem. Soc. Perkin Trans, 1: 2159–2162.
[3] N. Kalyanam, J. W. Karban, and J. L. M. Jr (1979), The monoalkylation of dibenzoylmethane. Org. Prep. Proced. Int. New J. Org. Synth., 11(2):100.
[4] T. C. Rimmin and C. Hauser (1967), Alkylation of Acetylacetone with Isopropyl Alcohol by Means of Boron Fluoride. J. Org. Chem., 32(8): 2615–2616.
[5] E. Ferrari, M. Saladini, F. Pignedoli, F. Spagnolo, and R. Benassi (2011), Solvent effect on keto–enol tautomerism in a new b-diketone: a comparison between experimental data and different theoretical approaches. New J. Chem., 35: 2840–2847.
[6] D. Fanou, B. Yao, S. Siaka, and G. Ado (2007), Heavy metals removal in aqueous solution by two delta-diketones. Jour. Appl. Sci., 7(2): 310–313.
[7] B. Basu and S. Paul (2013), Solid-Phase Organic Synthesis & Catalysis: Some Recent Strategies Using Alumina, Silica and Poly-ionic Resins. J. Catal.: 1–21.
[8] K. Girling (2011), Heterogeneously catalysed isomerisation of allylbenzene. MSc(R) thesis, University of Glasgow.
[9] B. Basu, P. Das, and S. Das (2008), Recent Advances in KF/alumina Promoted Organic Reactions. Curr. Org. Chem., 12(2): 141–158.
[10] Y. Ono and T. Baba (1997), Selective reactions over solid base catalysts. Catal. Today, 38: 321–337.
[11] E. J. Lenardão, D. O. Trecha, P. da C. Ferreira, R. G. Jacob, and G. Perin (2009), Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions. J. Braz. Chem. Soc., 20(1): 93–99.
[12] J. H. Clark, T. J. Farmer, and D. J. Macquarrie (2007), The Derivatisation of bio-Platform Molecules Using KF-Alumina Catalysis. ChemSusChem, 2(11): 1025–1027.
[13] K. Binnemans (2005), Rare-Earth Beta-Diketonates,†in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, J.-C. G. Bünzli, and V. K. Pecharsky, Eds. Katholieke Universiteit Leuven: 107–272.
[14] J. Escalante, M. Carrillo-Morales, and I. Linzaga (2008), Michael Additions of Amines to Methyl Acrylates Promoted by Microwave Irradiation. Molecules, 13: 340–347.
[15] B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long (2006), Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 31(5): 487–531.
[16] A. F. Parsons (2003). Keynotes in organic chemistry. Blackwell publishing.
[17] G. Z. Li, R. K. Randev, A. H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T. P. Davis, C. R. Bacera, D. M. Haddleton (2010), Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polym. Chem. (RSC), 1: 1196–1204.
[18] S. Ravichandran and E. Karthikeyan (2011), Microwave synthesis- Apotential tool for green chemistry. Int. J. ChemTech Res., 3(1): 466–470.
[19] K. Tanaka (2003), Solvent-free Organic Synthesis. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[20] R. S. Varma (1999), Solvent-free organic syntheses: using supported reagents and microwave irradiation. Green Chem., 1: 43–55.
[21] H. S. P. Rao and S. Jothilingam (2005), Solvent-free microwave-mediated Michael addition reactions. J. Chem. Sci., 117(4): 323–328.
[22] J. Neilan (2004), Green Chemistry. http://www2.volstate.edu/chem/2020/Labs/Solventless Claisen.pdf accessed 20/2/2016.
[23] X. U. Xiaobo, L. I. N. Jianping, and C. E. N. Peilin (2006), Advances in the Research and Development of Acrylic Acid Production from Biomass. Chinese J. Chem. Eng., 14(4): 419–427.
[24] I. Kharbangar, R. Rohman, H. Mecadon, and B. Myrboh (2012), KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-carboxylates and 5-Acetyl-4H-pyrans. Int. J. Org. Chem., 2: 282–286.
[2] P. Tundo, P. Venturello, and E. Angeletti (1987), Alkylation Reactions of Ethyl Malonate, Ethyl Acetoacetate, and Acetylacetone by Gas-Liquid Phase-Transfer Catalysis (G.L.-P.T.C.). J. Chem. Soc. Perkin Trans, 1: 2159–2162.
[3] N. Kalyanam, J. W. Karban, and J. L. M. Jr (1979), The monoalkylation of dibenzoylmethane. Org. Prep. Proced. Int. New J. Org. Synth., 11(2):100.
[4] T. C. Rimmin and C. Hauser (1967), Alkylation of Acetylacetone with Isopropyl Alcohol by Means of Boron Fluoride. J. Org. Chem., 32(8): 2615–2616.
[5] E. Ferrari, M. Saladini, F. Pignedoli, F. Spagnolo, and R. Benassi (2011), Solvent effect on keto–enol tautomerism in a new b-diketone: a comparison between experimental data and different theoretical approaches. New J. Chem., 35: 2840–2847.
[6] D. Fanou, B. Yao, S. Siaka, and G. Ado (2007), Heavy metals removal in aqueous solution by two delta-diketones. Jour. Appl. Sci., 7(2): 310–313.
[7] B. Basu and S. Paul (2013), Solid-Phase Organic Synthesis & Catalysis: Some Recent Strategies Using Alumina, Silica and Poly-ionic Resins. J. Catal.: 1–21.
[8] K. Girling (2011), Heterogeneously catalysed isomerisation of allylbenzene. MSc(R) thesis, University of Glasgow.
[9] B. Basu, P. Das, and S. Das (2008), Recent Advances in KF/alumina Promoted Organic Reactions. Curr. Org. Chem., 12(2): 141–158.
[10] Y. Ono and T. Baba (1997), Selective reactions over solid base catalysts. Catal. Today, 38: 321–337.
[11] E. J. Lenardão, D. O. Trecha, P. da C. Ferreira, R. G. Jacob, and G. Perin (2009), Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions. J. Braz. Chem. Soc., 20(1): 93–99.
[12] J. H. Clark, T. J. Farmer, and D. J. Macquarrie (2007), The Derivatisation of bio-Platform Molecules Using KF-Alumina Catalysis. ChemSusChem, 2(11): 1025–1027.
[13] K. Binnemans (2005), Rare-Earth Beta-Diketonates,†in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, J.-C. G. Bünzli, and V. K. Pecharsky, Eds. Katholieke Universiteit Leuven: 107–272.
[14] J. Escalante, M. Carrillo-Morales, and I. Linzaga (2008), Michael Additions of Amines to Methyl Acrylates Promoted by Microwave Irradiation. Molecules, 13: 340–347.
[15] B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long (2006), Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 31(5): 487–531.
[16] A. F. Parsons (2003). Keynotes in organic chemistry. Blackwell publishing.
[17] G. Z. Li, R. K. Randev, A. H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T. P. Davis, C. R. Bacera, D. M. Haddleton (2010), Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polym. Chem. (RSC), 1: 1196–1204.
[18] S. Ravichandran and E. Karthikeyan (2011), Microwave synthesis- Apotential tool for green chemistry. Int. J. ChemTech Res., 3(1): 466–470.
[19] K. Tanaka (2003), Solvent-free Organic Synthesis. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[20] R. S. Varma (1999), Solvent-free organic syntheses: using supported reagents and microwave irradiation. Green Chem., 1: 43–55.
[21] H. S. P. Rao and S. Jothilingam (2005), Solvent-free microwave-mediated Michael addition reactions. J. Chem. Sci., 117(4): 323–328.
[22] J. Neilan (2004), Green Chemistry. http://www2.volstate.edu/chem/2020/Labs/Solventless Claisen.pdf accessed 20/2/2016.
[23] X. U. Xiaobo, L. I. N. Jianping, and C. E. N. Peilin (2006), Advances in the Research and Development of Acrylic Acid Production from Biomass. Chinese J. Chem. Eng., 14(4): 419–427.
[24] I. Kharbangar, R. Rohman, H. Mecadon, and B. Myrboh (2012), KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-carboxylates and 5-Acetyl-4H-pyrans. Int. J. Org. Chem., 2: 282–286.
Downloads
Published
2018-03-15
How to Cite
Asemave, kaana, & Ahile, U. J. (2018). Modification of Acetyl Acetone with Methyl Acrylate. JOURNAL OF ADVANCES IN CHEMISTRY, 15(1), 6116–6121. https://doi.org/10.24297/jac.v15i1.7122
Issue
Section
Articles
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.