Nanocrystalline Hydroxyapatite Ceramics Prepared by Hydrolysis in Polyol Medium, Microstructure and Mechanical Properties after Spark Plasma Sintering

Authors

  • Abderrahmen Mechay Laboratoire des Sciences des Matériaux et d’Environnements, Faculté des Sciences de Sfax, B.P. n° 802 - 3000 Sfax, Tunisie
  • Noureddine Jouini Laboratoire des Sciences des Procédés et des Matériaux, CNRS-UPR 9001, Université Paris 13, PRES Sorbonne Paris Cité, 93430 Villetaneuse, France
  • Fréderic Schoenstein Laboratoire des Sciences des Procédés et des Matériaux, CNRS-UPR 9001, Université Paris 13, PRES Sorbonne Paris Cité, 93430 Villetaneuse.

DOI:

https://doi.org/10.24297/jac.v6i3.6594

Keywords:

Chemical synthesis, Bioceramics, Nanoparticles, Spark Plasma Sintering

Abstract

This Letter describes a new approach for the synthesis of hydroxyapatite (HA) nanoparticles by polyol process has been successfully conducted by spark plasma sintering process, resulting in a dense hydroxyapatite compacts. Besides, the sintering behaviour of hydroxyapatite powders at different temperatures ranging from 800°C to 950°C at 50 MPa was studied. The microstructure, Vickers microhardness, fracture toughness and density are described. The suitable sintering condition under the pressure of 50 MPa is 900°C for 5 min. A maximum value of the density was reached at around 900°C, and then decreased with further increase in the temperature due to the decomposition of hydroxyapatite into β-tricalcium phosphates.

Downloads

Download data is not yet available.

References

[1] Hench, L.L. 1998. Biomaterials: a forecast for the future. Biomaterials, 19, 1419.
[2] Hench, L.L. 1998. Bioceramics. J. Amer. Ceram. Soc. 81, 1705.
[3] Hench, L. L. 2000. The challenge of orthopaedic materials. Current Orthopaedics 14, 7-15.
[4] Martz, E.O., Goel, V.K., Pope, M.H., Park, J.B. 1997. Materials and design of spinal implants. J. Biome. Mater. Res. 38, 267.
[5] Jézéquel, D., Guenot, J., Jouini, N., Fiévet, F. 1995. Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 10, 77-83.
[6] Poul, L., Ammar, S., Jouini, N., Fievet, F., Villain, F. 2003. Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium : A versatile route related to the sol-gel process. J. Sol-Gel Sci. Tech. 26, 261.
[7] Lee, S., Jeong, S., Kim, D., Hwang, S., Jeon, M., Moon, J. 2008. ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattices and Microstructures. 43, 330.
[8] Mechay, A., Elfeki, H., Schoenstein, F., Jouini, N. 2012. Nanocrystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium. Chemi. Phys. Lett. 541, 75.
[9] Sang, Y., Groza, J.R., Sudarshan, T.S., Yamazaki, K. 1996. Diffusion donding of boron nitride on metal substrates by plasma activated sintering (PAS) process. Scripta Materialia, 34, 1383-86.
[10] Groza, J.R. 1994. Consolidation of atomized NiAl powders by plasma activated sintering process. Scripta. Metallurgica et Materialia. 30, 47.
[11] Gu, Y.W., Loha, N.H., Khora, K.A., Tora, S.B., Cheangb, P. 2002. Spark plasma sintering of hydroxyapatite powders. Biomaterials, 23, 37.
[12] Rodriguez-Carvajal, J. 1993. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed. Matter. 192, 55.
[13] Rietveld, H.M. 1969. A profile refinement method for nuclear and magnetic structures. J. Applied Crystallography, 2,65-71.
[14] Champion, E., Gautier, S., Bernache-Assollant, D. 1996.Characterization of hot pressed Al2O3-platelet reinforced hydroxyapatite composites. J. Mater. Sci. : Mater. in Medic.7, 125-130.
[15] Bose, S., Dasgupta, S., Tarafder, S., Bandyopadhyay, A. 2010. Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties. Acta Biomaterialia, 6, 3782-3790.
[16] Nishikawa, H. 2001. Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Mater.Lett. 50, 364-370.
[17] Jarcho, M., Bolen, C.H., Thomas, M.B., Bobick, J., Kay, J.F., Doremus, R.H. 1976. Hydroxyapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027-35.
[18] Steil, M.C., Fouletier, J., Kleitz, M., Labrune, P. 1999. BICOVOX : Sintering and grain size dependence of the electrical properties. J. Europ. Ceram. Soc. 19, 815.
[19] Wang, P.E., Chaki, T.K. 1993. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium
phosphate. J. Mater. Sc.: Mater. in Medic. 4, 150-58.
[20] Li, T., Li, Q., Fuh, J.Y.H., Yu, P.C., Lu, L., Wu, C.C. 2007. Effects of AGG on fracture toughness of tungsten carbide. Mater. Sci. and Engine. A . 587, 445-446.
[21] Coronel, L., Jernot, J.P., Osterstock, F. 1990. Microstructure and mechanical properties of sintered glass. J. Mater. Sci. 25, 4866–72.

Published

2013-01-13

How to Cite

Mechay, A., Jouini, N., & Schoenstein, F. (2013). Nanocrystalline Hydroxyapatite Ceramics Prepared by Hydrolysis in Polyol Medium, Microstructure and Mechanical Properties after Spark Plasma Sintering. JOURNAL OF ADVANCES IN CHEMISTRY, 6(3), 1085–1092. https://doi.org/10.24297/jac.v6i3.6594

Issue

Section

Articles