Kinetic Study of the Dissolution of Tunisian Natural Phosphate or Francolite in Industrial Phosphoric Acid

Authors

  • Ahmed CHAABOUNI a Laboratory of sciences of materials and environment, Faculty of Sciences of Sfax, Sfax, Tunisia. Soukra Road km 4 - B.P. n° 802 - 3038

DOI:

https://doi.org/10.24297/jac.v6i1.6585

Keywords:

Phosphate rock, ; Industrial phosphoric acid, Shrinking core model, Rate constant, Activation energy

Abstract

A kinetic study of dissolution of Tunisian natural phosphate or francolite whose particles have a mesoporous texture in
industrial phosphoric acid is carried out. Therefore, We focused on the study of the influence of certain parameters that
are close to those used in plants producing phosphoric acid which are the stirring speed (300, 500 and 700 rounds per
minute), concentration of phosphoric anhydride (25, 30 and 35 percent of P2O5), and the temperature (60, 70 and 80
degrees Celsius); we note that the rate of dissolution of this phosphate rises by increasing the precedent parameters.
Because of the complexity of the study of the dissolution of phosphate in mineral acids. Several different published kinetic
models giving different expressions of speed versus time. The shrinking core model is the appropriate model used in our
work in a solution where there is no calcium sulfate to calculate the rate constant k and the activation energy Ea = 3.3946
Kcal/mol of this phosphate.

Downloads

Download data is not yet available.

References

REFERENCES
[1] Pettijhon, F. J. and Potter, P. E. 1964. Atlas and glossary of primary sedimentary studies.
[2] Nouah, A. 1992. Les apatites calco-cadmiées : introduction, localisation et extraction du cadmium. Thèse de doctorat
de Spécialité, Institut national Polytechnique, Toulouse, France.
[3] Sicre, R. Les engrais, CRDP Nantes.
[4] Becker, P. 1989. Phosphates and Phosphoric acid, Marcel Decker.
[5] SLACK, A. V. 1968. PHOSPHORIC ACID, MARCEL DEKKER. INC, NEW YORK, Volume I, Part I, 129
[6] Waggaman, Wm. H. 1953. PHSPHORIC ACID, PHOSPHATES AND PHOSPHATIC FERTILIZERS. SECOND
EDITION, Second Printing, 183.
[7 ] Edwards, R. S. Synthetic Gypsum, its recovery and use, Trans. A.I.C.E., 16 Part 2, (1924) 39-54.
[8] Frick, F. F. and Woodman, F. W. 1940. U. S. Part. 2,193,092, Mar. 12.
[9] Avrami, M. 1939. Kinetics of Phase Change.J. Chem. Phys. 7, (1939) 1103.
[10] Yartasi, A., Muhtar Kocakerim, M., Yapici, S., and Ozmetin, C. 1994. Dissolution Kinetics of Phosphate Ore in SO2-
Saturated Water, Ind. Eng. Chem. Res. 33 (1994) 2220-2225.
[11] Abali, Y., Colak, S., and Yartasi, A. 1997. Dissolution Kinetics of Phosphate Rock with Cl2 Gas in Water,
Hydrometallurgy,46 (1997) 13-25.
[12] GILOT, B. and GUIRAUD, R. 2004. Cinétique et catalyse hétérogène, Ellipses Edition Marketing S.A., 2004, 155-174.
[13] Saeed, M., Hamid, N., Khalique, A., Mansoor, S., and Iqbal, J. 1994. Kinetic study of dissolution of phosphate rock in
aqueous acid solution, Sci. Int. (Lahore), 6(1) (1994) 51-53.
[14] Eguchi, M., Khalique, A., and Nakamura, H. 1982. J. Japan. Inst. Metals, 49 (1982) 1061.
[15] Córdoba, E. M., Muñoz, J. A., Blázquez, M. L., González, F., and Ballester, A. 2008. Leaching of chalcopyrite with
ferric ion. Part II: Effect of redox potential, Hydrometallurgy, 93 (2008) 88–96.
[16] Roca, A. Cruells, M. Patiño, F. Rivera, I. Plata, M. 2006. Hydrometallurgy, 81 (2006) 15–23.
[17] Sohn, H.Y. and Wadsworth, M.E. 1979. Rate Processes of Extractive Metallurgy. Plenum, New York, p. 133.
[18] Ballester, A., Verdeja, L. F., and Sancho, J. 2000. Metalurgia Extractiva, vol. I. Fundamentos, Editorial Síntesis,
Madrid, 182–189.
[19] Haung, H. H. 1989. Unit Processes in Extractive Metallurgy. Montana College of Mineral Science and Technology.
National Science Foundation, USA. Modul 2.
[20] Levenspiel, O. 1979. Ingeniería de las Reacciones Químicas (translated from English version). Editorial Reverté,
Barcelona, Spain.
[21] Levenspiel, O. 2004. Capítulo 3: Interpretación de los datos obtenidos en un reactor intermitente, Ingeniería de las
reacciones químicas, 3a edición. Editorial Limusa Wiley, México, 38–67.
[22] Logan, S. R. 2000. Capítulo 1: Fundamentos empíricos de la cinética química. Fundamentos de cinética y
química. Editorial Addison Wesley, Madrid, 1–22.
[23] van der Sluis, S.,Meszaros, Y., Marchee, W. G. J., Wesselingh, H. A., and van Rosmalen, G. M. 1987. The digestion
of phosphate ore in phosphoric acid.
[24] Sergey Dorozhkin, V. 2002. A Review on the Dissolution Models of Calcium Apatites., Progress in Crystal Growth and
Characterization of Materials (2002) 45-61.
[25] Gharabaghi, M., Irannajad, M., and Noaparast, M. 2010. A review of the beneficiation of calcareous phosphate ores
using organic acid leaching., Hydrometallurgy, 103 (2010) 96–107.

Downloads

Published

2017-04-24

How to Cite

CHAABOUNI, A. (2017). Kinetic Study of the Dissolution of Tunisian Natural Phosphate or Francolite in Industrial Phosphoric Acid. JOURNAL OF ADVANCES IN CHEMISTRY, 6(1), 908–916. https://doi.org/10.24297/jac.v6i1.6585

Issue

Section

Articles