Theoretical study of Aniline-Thiophene based Polymers

Authors

  • P. P. Zamora Zamora Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ciencia de Materiales, Av. Tuper 2069, Santiago, Chile

DOI:

https://doi.org/10.24297/jac.v6i2.6582

Keywords:

Conducting polymers, DFT, band gap, dual reactivity index.

Abstract

In this work, two kinds of novel thiophene-aniline polymers, were studied through theoretical protocols in order to find new insights about the polymerization mechanism, the chemical structure and optical properties exhibited by this kind of conducting materials. The dual descriptor—a local reactivity descriptor derived from conceptual density functional theory— and the condensed electrophilic Fukui index were used to describe the most probable sites of polymerization. Frontier orbitals energies were calculated to predict the band gap of both polymeric films. All results demonstrated how theoretical protocols help in the understanding of chemical polymerization mechanism and in the prediction of relevant properties, which can accelerate the synthesis process of new monomers

Downloads

Download data is not yet available.

References

1) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.; Bredas, J. L.; Logdlund, M. Nature 1999, 397, 121.
(2) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Advanced Functional Materials 2001, 11, 15.
(3) Hughes, M.; Chen, G. Z.; Shaffer, M. S. P.; Fray, D. J.; Windle, A. H. Chem. Mater. 2002, 14, 1610.
(4) Gerard, M.; Chaubey, A.; Malhotra, B. D. Biosensors and Bioelectronics 2002, 17, 345.
(5) Zamora, P. P.; Camarada, M. B.; Jessop, I. A.; Díaz, F. R.; del Valle, M. A.; Cattin, L.; Louarn, G.; Bernede, J. C. Int. J. Electrochem. Sci. 2012, 7, 8276.
(6) Koopmans, T. Physica 1934, 1, 104.
(7) Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
(8) Parr, R. G.; Yang, W. Density functional theory of atoms and molecules Oxford University Press: New York, 1997.
(9) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793.
(10) Fukui, K. Science 1987, 218, 747.
(11) Parr, R.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.(12) Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2005, 109, 205.
(13) Morell, C.; Grand, A.; Toro-Labbé, A. Chem. Phys. Lett. 2006, 425, 342.
(14) Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864.
(15) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Laham, A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. 2004.
(17) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(18) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(19) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
(20) Duarte, H. A.; Dos Santos, H. F.; Rocha, W. R.; De Almeida, W. B. Journal of Chemical Physics 2000, 113, 4206.
(21) Camarada, M. B.; Jaque, P.; Díaz, F. R.; del Valle, M. A. Journal of Polymer Science Part B: Polymer Physics 2011, 49, 1723.
(22) Raos, G.; Famulari, A.; Marcon, V. Chemical Physics Letters 2003, 379, 364.
(23) Karpfen, A.; Choi, C. H.; Kertesz, M. The Journal of Physical Chemistry A 1997, 101, 7426.
(24) Alemán, C.; Julia, L. The Journal of Physical Chemistry 1996, 100, 1524.
(25) Bhadra, S.; Singha, N.; Khastgir, D. Eur. Polym. J. 2008, 44, 1763.
(26) Meier, H.; Stalmach, U.; Kolshorn, H. Acta Polymerica 1997, 48, 379.
(27) Alemán, C.; Ferreira, C. A.; Torras, J.; Meneguzzi, A.; Canales, M.; Rodrigues, M. A.; Casanovas, J. Polymer 2008, 49, 5169. (28) Krebs, F.C.; Sol. Energy Mater. Sol. Cells 2009, 93,394-412. (29) Bernede, J.C.; Organic Photovoltaic cells: History, Principle and Techniques 2008, 53,1549-1564. (30) Godoy, A.; Cattin, L.; Toumi, L; Diaz, F. R.; del Valle, M. A.; Soto, G. M.; Kouskoussa, B.; Morsili, M.; Benchouk, K.; Khelil, A.; Bernede, J. C.; Sol. Energy Mater. and Solar Cells 2010, 94,648-654. (31) Bernede, J. C.; Cattin, L.; Morsli, M.; Berredjem, Y.; Energy Mater. Sol. Cells 2008, 92, 1508-1520. (32) Shorotriya, V.; Li, Gi.; Yao, Y.; Chu, C-V.; Yang, Y. ; Appl. Phys. Lett 2006, 88,735-748. (33) R. J. Kline a; M. D. McGehee Journal of Macromolecular Sciencew, Part C: Polymer Reviews, 46:27–45, 2006 (34) Lobana, T. S.; Khanna, S.; Castineiras, A.; Hundal, G.; Anorg, Z.; Allg. Chem 2010, 636, 454–456
(35) Gallego, A.; Castillo, O.; Zamora, F.; Delgado, S.; Inorg. Chem. 2002, 7, 1070– 1075

Downloads

Published

2017-04-24

How to Cite

Zamora, P. P. Z. (2017). Theoretical study of Aniline-Thiophene based Polymers. JOURNAL OF ADVANCES IN CHEMISTRY, 6(2), 982–989. https://doi.org/10.24297/jac.v6i2.6582

Issue

Section

Articles