Electrospun Nanofibers of Acrylonitrile and Itaconic Acid Copolymers and their Stabilization

Authors

  • Selda Sen Sen Istanbul Technical University, Department of Chemistry, Polymer Science and Technology,Maslak, 34469, Istanbul, Turkey

DOI:

https://doi.org/10.24297/jac.v6i2.6575

Keywords:

Nanofiber, Acrylonitrile, Itaconic Acid, Copolymer

Abstract

(APS) as an oxidant in the aqueous medium,and nanofibers produced by electrospinning . Electrospun nanofiber mats were by treated heat under air atmosphere to be stabilized. Nanofiber production from AN-IA copolymers and suitability of the nanofiber as carbon nanofiber precursor is discussed. Copolymer are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The effect of IA content on the spectroscopic and thermal properties of AN-IA copolymers was investigated. Increasing IA content confirmed by spectroscopic methods seriously affects thermal properties which is important for carbon nanofiber production. IA provides a catalytic effect on stabilization process by decreasing initiation cyclization reaction temperature from 202 to 195 oC. Elecrospinning from the AN-IA copolymer solutions in dimethyl foramide (DMF) was performed, morphology of nanofibers was monitored using Scanning Electron Microscopy (SEM). Bead free nanofibers were produced from AN-IA copolymer solutions under same conditions. Average nanofiber diameter decreases from 878±18 to 376±7 nm according to increasing IA content in copolymers. The nanofiber mats produced were treated at high temperature under air atmosphere for oxidative stabilization. Stabilized nanofibers were characterized using FTIR-ATR spectrometer and a new structure was monitored as a result of cyclization reactions. The stabilized nanofibers were also characterized mophologically using SEM. Volume loss occurring after heat treatment calculated based on the nanofiber diameter changes. Consequently, electrospun nanofibers can be suggested as a carbon nanofiber precursor due to suitability for electrospinning and stabilization process.

Downloads

Download data is not yet available.

References

[1] Bajaj, P., Paliwal, D. K., Gupta, A. K. Acrylonitrile–acrylic acids copolymers. I. Synthesis and characterization, Journal of Applied Polymer Science, 49(1993)823–833 [2] Han, N., Zhang, X., Wang, X., Ning Wang, N. . Fabrication, structures and properties of Acrylonitrile/Vinyl acetate copolymers and copolymers containing microencapsulated phase change materials, Macromolecular Research, 18(2010)144-152, [3] Bhanu, V.A., Rangarajan, P., Wiles, K., Bortner, M., Sankarpandian, M., Godshall, D., Glass, T.E., Banthia, A.K., Yang, J., Wilkes, G., Baird, D., McGrath. J.E., . Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors, Polymer, 43 (2002)4841–4850, [4] Han, N., Zhang, X., and Wang, X.C., Various Comonomers in Acrylonitrile Based Copolymers: Effects on Thermal Behaviour., Iranian Polymer Journal, 19 (2010) 243-253 [5] Gupta, K., Paliwal, D. K., Bajaj, P. Acrylic Precursors for Carbon Fibers. Journal of Macromolecular Science. Part C: Polymer Reviews, 31(1991) 1-89 [6] Yu, M., Wang, C., Zhao, Y., Zhang, M., Wang, W. Thermal Properties of Acrylonitrile/Itaconic Acid Polymers in Oxidative and Nonoxidative Atmospheres. Journal of Applied Polymer Science, 116(2010)1207–1212 [7] Bhardwaj, N., Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(2010)325–347 [8] Gu, S. Y., Ren, J., Vancso, G. J. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 41 (2005) 2559–2568 [9] Wang, T., Kumar, S. Electrospinning of Polyacrylonitrile Nanofibers. Journal of Applied Polymer Science, 102(2006) 1023–1029 [10] Fang, J., Wang, H., Niu, H., Lin, T., Wang, X. Evolution of Fiber Morphologies during Poly (acrylonitrile) Electrospinning. Macromol. Symp., 287(2010)155–161 [11] Zhou, Z., Lai, C., Zhang, L., Qian, Y., Hou, H., Reneker, D. H., Fong, H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 50(2009) 2999–3006 [12] Zhou, Z., Liu, K., Lai, C., Zhang, L., Li, J., Hou, H., Reneker, D. H., Fong, H. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 51 (2010)2360- 2367[13] Hussain, D., Loyal, F., Greiner, A., Wendorff, J. H. Structure property correlations for electrospun nanofiber nonwovens. Polymer, 51(2010). 3989-3997 [14] Greiner, A. Wendorff, J.H. A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(2007)5670-703. [15] Gu, S.Y., Ren, J., Vancso, G. J. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 41(2005)2559-2569. [16] Moon, S C., Farris, R. J. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns. Carbon, 47(2009)2829-39. [17] Saum, M. Intermolecular association in organic nitriles; the CN dipole-pair bond. Journal of Polymer Science, 42, 139(1960) 57–66 [18] Ram, A. 1997, The Chemistry of Polymers, Fundamentals of Polymer Engineering, Plenum Press, New York [19] Nuyken, O. ,2005, Polymers of acrylic acid, methacrylic acid, maleic acid and their derivatives Technische Universitat Munchen, Garching, Germany CSL Friebe - Handbook of polymer synthesis - CRC Press [20] Sen, K., Hajir Bahrami, S., Bajaj, P. 1996, High-Performance Acrylic Fibers JMS Rev Macromol Chem Phys, C 36(1996)1-76 [21] Bhanu, V.A., Rangarajan, P., Wiles, K., Bortner, M., Sankarpandian, M., Godshall, D., Glass, T. E., Banthia, A. K., Yang, J., Wilkes, G., Baird, D., McGrath J. E. . Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 43(2002) 4841–4850 [22] Mohammady, S. Z., Elkholy, S. S., and Elsabee, M. Z. Investigation of the relaxation behavior of novel terpolymers of acrylonitrile, methyl methacylate and indene, Polym Int, 56(2006) 7-13 [23] Bahrami, H., Bajaj, P., Sen. K. Acid Thermal Behavior of Acrylonitrile Carboxylic Acid Copolymers. Journal of Applied Polymer Science, Vol. 88(2003)685–698 [24] Yagci, Y., Menceloglu, Y., Baysal, B. M.,Gungor, A. Acrylonitrile block copolymers; Preparation of polyacrylonitrile containing azo-Iinkage in the main chain by anionic insertion polymerization. A. Polymer Bulletin 21(1989)259-263 [25] Qiu, G., Tang, Z., Huang, N. X., Chen, H. J. Investigations of the Copolymerization of Acrylonitrile with Vinyl Acetate and Sodium Methallylsulfonate. Journal of Applied Polymer Science, 82(2001) 854–860 [26] Yu, M., Chen, H., Liang, Y., Cui, H., Zhou, W., Cui, X., Li, D. Porous Acrylonitrile/Itaconic Acid Copolymers Prepared by Suspended Emulsion Polymerization. Journal of Applied Polymer Science, 111(2009) 2761–2768 [27] Devasia, R., Reghunadhan Nair C. P., Ninan, K. N. Solvent and kinetic penultimate unit effects in the copolymerization of acrylonitrile with itaconic acid. European Polymer Journal, 38(2002) 2003–2010 [28] Xu, Z. K., Kou, X., Liu, R. Q., Nie, Z. M., Xu, Y. Y. Incorporating alpha-allyl glucoside into polyacrylonitrile by water-phase precipitation copolymerization to reduce protein adsorption and cell adhesion. Macromolecules, 36(2003):2441-2447 [29] Nie, F. Q., Xu, Z. K., Wan, L. S., Ye, P., Wu, J. Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes. Journal of Membrane Science, 230(2003)1-11. [30] Liu, T., De Simone, J. M., Roberts, G. W. Kinetics of the precipitation polymerization of acrylic acid in supercritical carbon dioxide: The locus of polymerization, Chemical Engineering Science, 61(2006) 3129 – 3139. [31] Devasia, C. P., Nair, R., Sadhana, N. S., Babu, Ninan, K. N. Fourier Transform Infrared and Wide-Angle X-Ray Diffraction Studies of the Thermal Cyclization Reactions of High-Molar-Mass Poly(acrylonitrile-co-itaconic acid), J. App Poly Sci, 100(2006)3055–3062. [32] Grassie, N., McGuchan, R. Pyrolysis of polyacrylonitrile and related polymers—VI. Acrylonitrile copolymers containing carboxylic acid and amide structures, Eur Polym J, 8(1972) 257-269. [33] Ouyang, Q., Cheng, L., Wang, H., Li, K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile Polymer Degradation and Stability, 93(2008)1415–1421 [34] Tsai, J. S., Lin, C. H. Polyacrylonitrile precursors by copolymer and additive with itaconic acid, Journal of Materıals Science Letters, 9(1990)869-871 [35] Zhao, Y., Wang, C., Yu, M., Cui, M., Wang, O., Zhu,B. Study on monomer reactivity ratios of acrylonitrile/itaconic acid in aqueous deposited copolymerization system initiated by ammonium persulfate. J Polym Res, 16(2009)437–442 [36] Devasia,R. Nair, R. Ninan, K.N. Copolymerization of acrylonitrile with itaconic acid in dimethylformamide: effect of triethylamine. European Polymer Journal, 39(2003) 537–544[37] Wang, Z. G., Ke, B. B., Xu, Z. K. Covalent Immobilization of Redox Enzyme on Electrospun Nonwoven Poly(Acrylonitrile-co-Acrylic Acid) Nanofiber Mesh Filled With Carbon Nanotubes: A Comprehensive Study. Biotechnology and Bioengineering. 97(2007) 708-720. [38] Huang, X. J., Yu, A. G., Jiang, J., Pan, C. Qian, J.W. Xu, Z.K. Surface Modification of Nanofibrous Poly(acrylonitrile-co-acrylic acid) Membrane with Biomacromolecules for Lipase Immobilization, Journal of Molecular Catalysis B: Enzymatic. 57(2009) 250-256. [39] Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., Ma, Z., 2005, An Introduction yo Electrospinning and Nanofibers, World Scientific Publishing Co. Pte. Ltd., Singapore. [40] Bhardwaj, N., Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances. 28(2010)325-347. [41] Ramakrishna, S., Fujihara, K., Teo, W.E., Ma, Z.W. and Lim, T.C., ,2005. An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co. Pte. Ltd., ISBN 981-256-415-2. [42] Göktaş, A., (2008). Electrospinning of Polystyrene/Butyl Rubber Blends: A Parametric Study’ Postgraduate thesis. [43] Cetiner, S., Kalaoglu, F., Karakas, H., Sarac, A.S. (2010). Electrospun Nanofibers of Polypyrrole-Poly(Acrylonitrile-co-Vinyl Acetate). Textile Research Journal, 80 (2010) 1784–1792 [44] Kalayci, V. E., Patra, P. K., Kim, Y. K., Ugbolue, S. C., Warner , S. B. Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers, , Polymer, 46(2005) 7191–7200 [45] Buchko, C. J, Chen, L. C., Shen, Y., and Martin, D. C. Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer, 40(1999) 7397-7407. [46] Ultra-Web Media Technology, (n.d.) Date retrieved 25.06.2012, adress: http://www.donaldson.com/en/about/technology/index.html [47] Nanoweb Advanced Nanofiber Technology, (n.d.) Date retrieved 25.06.2012, adress: http://www.hollingsworth-vose.com/products/nanoweb/index.html [48] Reneker, D.H., Fong, H., Eds. 2003, Polymer nanofibers, Polymer Preprints, American Chemical Society. [49] Senecal, K. J., Ziegler, D. P. Mosurkal,R. , Schreuder-Gibson, H. Samuelson, L.A. Photoelectric response from nanofibrous membranes. Mater Res Soc Symp Proc,708(2002).285–289. [50] Norris, I. D. Shaker, M. M., Ko, F.K., Macdiarmid, A.G. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. SyntheticMetals, 114(2000). 109–114. [51] Choi, S. W., Jo, S. M., Lee, W. S., Kim, Y. R. An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater;15(2003)2027–2032. [52] Kim, C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. Journal of Power Sources, 142(2005)382–388 [53] Kim, C., Yang, K. S. (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Applied Physics Letters, 83(2003)1216-1218 [54] Devasia, R., Reghunadhan Nair, C.P. and Ninan, K.N. (2003). Dilute solution viscosity properties of high molar mass poly(acrylonitrile-co-itaconic acid). Polym Int, 52(2003) 1519–1526 [55] Bercea, M. Morariua, Ioan, S. Ioan, C. Simionescu, B.C. Viscometric study of extremely dilute polyacrylonitrile Solutions, European Polymer Journal, 35(1999) 2019-2024 [56] Bajaj, P., Sreekumar, T.V. and Sen, K. . Effect of Reaction Medium on Radical Copolymerization of Acrylonitrile with Vinyl Acids, Journal of Applied Polymer Science, 79(2001) 1640–1652 [57] Devasia, R., Reghunadhan Nair, C. P., Ninan, K. N. Temperature and shear dependencies of rheology of poly(acrylonitrile-co-itaconic acid) dope in DMF, Polym. Adv. Technol.; 19(2008). 1771–1778 [58] Lee, J. M., Kang, S. J., Park, S. J. . Synthesis of Polyacrylonitrile Based Nanoparticles via Aqueous Dispersion Polymerization. Macromolecular Research, 17, 10(2009)817-820 [59] Bajaj, P., Sen, K., Hajir Bahrami, S. Solution Polymerization of Acrylonitrile with Vinyl Acids in Dimethylformamide, Journal of Applied Polymer Science, 59(1996) 1539-1550 [60] Ouyang, Q., Cheng, L., Wang, H. J., Li, K. X. Dsc Study Of Stabilization Reactions in Poly(Acrylonitrile– co–Itaconic Acid) with Peak-Resolving Method, Journal of Thermal Analysis and Calorimetry, 94 1(2008) 85–88 [61] Gupta, K., Paliwal, D. K., Bajaj, P. Effect of the Nature and Mole Fraction of Acidic Comonomer on the Stabilization of Polyacrylonitrile, Journal of Applied Polymer Science, 59(1996) 1819-1826 [62] Bajaj, P., Screekumar T. V., Sen, K.. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer, 42(2001) 1707-1718[63] Gupta, A. K., Paliwal, D. K., Bajaj, P. Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile. J Appl Polym Sci, 58(1995) 1161-1174 [64] P. E. Milsom, J. L. Meers 1985, Gluconic and itaconic acids M. Moo-Young (Ed.), Comprehensive Biotechnology, vol. 3Pergamon Press, Oxford. [65] Cetiner, S., Sen, S., Arman, B. and Sarac, A. S. Acrylonitrile/Vinyl Acetate Copolymer Nanofibers With Different Vinylacetate Content. J. Appl. Polym. Scı. 127(2012) 3830–3838,

Downloads

Published

2014-01-01

How to Cite

Sen, S. S. (2014). Electrospun Nanofibers of Acrylonitrile and Itaconic Acid Copolymers and their Stabilization. JOURNAL OF ADVANCES IN CHEMISTRY, 6(2), 958–981. https://doi.org/10.24297/jac.v6i2.6575

Issue

Section

Articles