Accumulation of Heavy Metal Ions by Eichhornia Crassipes from Battery Industry Effluent under the Influence of Cattle Manure


  • Dinesh kumar Myilsamy Department of Chemical Engineering, Research Scholar, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India 641014.
  • Sivalingam Angamuthu Department of Chemical Engineering, Associate Professor, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India 641014.
  • Thirumarimurugan Marimuthu Department of Chemical Engineering, Professor, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India 641014.



heavy metal, Eichhornia crassipes, Eichhornia crassipe, battery effluent, transposition factor, Coimbatore


Phytoremediation, an emerging technology which uses plants to remove contaminants of concern (COC) such as organic and inorganic compounds especially heavy metals (HM). The present study focuses on assessing the toxicity of heavy metals available in effluents discharged from industries and the accumulation ability of an aquatic plant, Eichhornia crassipes (water hyacinth). Phytoremedial potential of E. Crassipes and HM interaction between soil and water were evaluated in the present study under the presence of cow dung manure as an enhancer. Heterogenous accumulation of metal ions were found in the plant. Heavy metal concentration in plant parts were varied for roots and shoots. The concentration of HM ions in the plant parts were varied from root to shoot. Value of translocation factor (TF) was found to be in the region 0.5 – 0.8, with Fe has low (0.51) and Pb has high (0.77), bioconcentration factor (BCF) were in the order of Ar > Ca > Zn > Fe > Pb at both roots and shoots. Transposition factor (TrF) of all HM ions were >1.5 except for Zn (1.21). E. Crassipes was found to accumulate a large amount of HM ions and could be used for efficient treatment of contaminated water.


Download data is not yet available.


1. Abdelhafez, A.A., Abbas, M.H.H., Attia, T.M.S., 2015. Environmental Monitoring of Heavy-Metals Status and Human Health Risk Assessment in the soil of Sahl El-Hessania Area, Egypt. Polish J. Environ. Stud. 24, 459–467.
2. Chen, L., Cai, Q., Xu, S., Liu, X., Chen, S., 2015. Distibution Characteristics, Pollution Assessment, and Source Identification of Heavy Metals in Sediments of Wetland Lakes. Polish J. Environ. Stud. 24, 1525–1533.
3. Singh, A., Prasad, S.M., 2011. Reduction of heavy metal load in food chain: technology assessment. Rev. Environ. Sci. Bio/Technology 10, 199–214. doi:10.1007/s11157-011-9241-z
4. Miloskovic, A., Simic, V., Milošković, A., Simić, V., 2015. Arsenic and Other Trace Elements in Five Edible Fish Species in Relation to Fish Size and Weight and Potential Health Risks for Human Consumption. Polish J. Environ. Stud. 24, 199–206. doi:10.15244/pjoes/24929
5. Özbay, İ., 2015. Evaluation of Municipal Solid Waste Management Practices for an Industrialized City. Polish J. Environ. Stud. 24, 637–644. doi:10.15244/pjoes/30933
6. Przydatek, G., 2016. A Comparative Analysis of Municipal Waste Management Systems. Polish J. Environ. Stud. 25, 2107–2112. doi:10.15244/pjoes/61823
7. Farid, M., Irshad, M., Fawad, M., Ali, Z., Eneji, A.E., Aurangzeb, N., Mohammad, A., Ali, B., 2014. Effect of cyclic phytoremediation with different wetland plants on municipal wastewater. Int. J. Phytoremediation 16, 572–81. doi:10.1080/15226514.2013.798623
8. Çakmakci, T., Ucar, Y., 2014. Efficiency of Canola ( Brassica Napus L .) as an Accumulator of Heavy Metals in Wastewater Applications. Polish J. Environ. Stud. 23, 2309–2313.
9. Zhang, C., Tan, S., Li, J., Peng, C., 2016. Polishing of secondary effluent by a two-stage vertical-flow constructed wetland. Polish J. Environ. Stud. 24, 923–928. doi:10.15244/pjoes/23868
10. Akinbile, C.O., Ogunrinde, T.A., Che bt Man, H., Aziz, H.A., 2016. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata. Int. J. Phytoremediation 18, 54–61. doi:10.1080/15226514.2015.1058330
11. Zhang, Z., Rengel, Z., Meney, K., 2010. Cadmium accumulation and translocation in four emergent wetland species. Water. Air. Soil Pollut. 212, 239–249. doi:10.1007/s11270-010-0339-7
12. Pandey, V.C., 2016. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond. Int. J. Phytoremediation 18, 450–452. doi:10.1080/15226514.2015.1109605
13. Rezania, S., Din, M.F.M., Taib, S.M., Dahalan, F.A., Songip, A.R., Singh, L., Kamyab, H., 2016. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int. J. Phytoremediation 18, 679–685. doi:10.1080/15226514.2015.1130018
14. Feng, W., Xiao, K., Zhou, W., Zhu, D., Zhou, Y., Yuan, Y., Xiao, N., Wan, X., Hua, Y., Zhao, J., 2016. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. doi:10.1016/j.biortech.2016.10.047
15. Sapci, Z., Ustun, E.B., 2015. Heavy Metal Uptakes by Myriophyllum verticillatum from Two Environmental Matrices: The Water and the Sediment. Int. J. Phytoremediation 17, 290–7. doi:10.1080/15226514.2014.898022
16. Ciurli, a., Lenzi, L., Alpi, a., Pardossi, a., 2014. Arsenic Uptake and Translocation by Plants in Pot and Field Experiments. Int. J. Phytoremediation 16, 804–823. doi:10.1080/15226514.2013.856850
17. Farnese, F., Oliveira, J., Lima, Leão, G., Gusman, G., Silva, Lc, 2014. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz. J. Biol 103, 103–112. doi:10.1590/1519-6984.01113
18. Bernardini, a, Salvatori, E., Guerrini, V., Fusaro, L., Canepari, S., Manes, F., 2015. Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: photosynthetic performance and metal accumulation capacity under controlled conditions. Int. J. Phytoremediation 6514. doi:10.1080/15226514.2015.1058327
19. Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M., Mohammad, A., 2016. Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediation 18, 25–32. doi:10.1080/15226514.2015.1058331
20. Borisova, G., Chukina, N., Maleva, M., Kumar, A., Prasad, M.N. V., 2016. Thiols as Biomarkers of Heavy Metal Tolerance in the Aquatic Macrophytes of Middle Urals, Russia. Int. J. Phytoremediation 6514, 00–00. doi:10.1080/15226514.2016.1183572
21. Budak, F., Zaimoğlu, Z., Başcı, N., 2011. Uptake and Translocation of Hexavalent Chromium by Selected Species of Ornamental Plants. Polish J. Environmnetal Stud. 20, 857–862.
22. Mahamadi, C., Nharingo, T., 2010. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol. 101, 859–864. doi:10.1016/j.biortech.2009.08.097
23. Choiński, A., Ptak, M., Ławniczak, A., 2016. Changes in Water Resources of Polish Lakes as Influenced by Natural and Anthropogenic Factors. Polish J. Environ. Stud. 25, 1883–1890. doi:10.15244/pjoes/62906
24. Ciarkowska, K., Hanus-Fajerska, E., 2008. Remediation of Soil-Free grounds contaminated by Zinc, Lead and Cadmium with the use of Metanophytes. Polish J. Environ. Stud. 17, 707–712.
25. Engin, M.S., Uyanik, a, Kutbay, H.G., 2015. Accumulation of heavy metals in water, sediments and wetland plants of kizilirmak delta (samsun, Turkey). Int. J. Phytoremediation 17, 66–75. doi:10.1080/15226514.2013.828019
26. Hazra, M., Avishek, K., Pathak, G., 2015. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in Contaminated Water Bodies Across Ranchi City (India). Int. J. Phytoremediation 17, 835–840. doi:10.1080/15226514.2014.964847
27. Paun, A., Neagoe, A., Paun, M., Baciu, I., Iordache, V., 2015. Heavy Metal-Induced Differential Responses to Oxidative Stress and Protection by Mycorrhization in Sunflowers Grown in Lab and Field Scales. Polish J. Environ. Stud. 24, 1235–1247. doi:10.15244/pjoes/32099
28. Li, Q., Chen, B., Lin, P., Zhou, J., Zhan, J., Shen, Q., Pan, X., 2014. Adsorption of heavy metal from aqueous solution by dehydrated root powder of Long-root Eichhornia crassipes. Int. J. Phytoremediation 00–00. doi:10.1080/15226514.2014.898017
29. Soni, H.B., Thomas, S., 2015. Biotransportation of Heavy Metals in Eichhornia crassipes ( MART .) Solms . Using X-Ray Fluorescence Spectroscopy 10, 9–21.
30. Hill, J.M., 2014. Investigations of growth metrics and δ15N values of water hyacinth (Eichhornia crassipes, (Mart.) Solms-Laub) in relation to biological control. Aquat. Bot. 114, 12–20. doi:10.1016/j.aquabot.2013.12.001
31. Parzych, A.E., 2016. Accumulation of chemical elements by organs of Sparganium erectum L. and their potential use in phytoremediation process. J. Ecol. Eng. 17, 89–100. doi:10.12911/22998993/61195
32. Rai, P.K., 2008. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int. J. Phytoremediation 10, 131–158. doi:10.1080/15226510801913918




How to Cite

Myilsamy, D. kumar, Angamuthu, S., & Marimuthu, T. (2017). Accumulation of Heavy Metal Ions by Eichhornia Crassipes from Battery Industry Effluent under the Influence of Cattle Manure. JOURNAL OF ADVANCES IN CHEMISTRY, 13(11), 5997–6004.