DIMINUTION OF HEAVY METALS IN INDUSTRIAL SOLID WASTE BY AN AMALGAMATION OF MYCO AND VERMI REMEDIATION

Authors

  • Gowthami S Department of Chemical Engineering, Research Scholar, Coimbatore Institute of Technology, Tamilnadu, India.
  • Thirumarimurugan M Department of Chemical Engineering, Research Scholar, Coimbatore Institute of Technology, Tamilnadu, India.
  • Sivakumar V. M Department of Chemical Engineering, Assistant Professor, Coimbatore Institute of Technology, Tamilnadu, India.

DOI:

https://doi.org/10.24297/jac.v13i11.5770

Keywords:

Solid waste, Bio-fertilizer., heavy metals, fungus, earthworm, Bio-fertilizer

Abstract

Due to the development of Industrialization and urbanization, a wide variety of industrial and consumer products, by products and solid waste has been produced. The solid waste generated constitutes the hazardous substance which possesses certain impacts on humans and their environment. In that heavy metal pollution from industries are the serious environmental problems. Rapid development in industries in the last few decades resulted in the strenuous task for finding to manage the waste generated. These hazardous solid wastes have been formulated into reusable end product by the process of bioremediation. Bioremediation is a natural process, which involves the use of organism to remove or neutralize the toxic pollutant from the contamination site. This review focus on the toxic effects of heavy metals on the environment and on the human health as well as the possible bioremediation method of these metals using fungus and earthworm. In order to conserve the environment and resources, the biological remediation by both fungus and earthworm for heavy metals and their efficiency have been summarised in detail.

Downloads

Download data is not yet available.

References

1. Adeyemi, A.O., 2009. Bioaccumulation of Arsenic by Fungi. Am. J. Environ. Sci. 5. 364-370.
2. Adi ainurzaman Jamaludin, Noor Zalina Mahmood. 2010. Effects of vermicomposting duration to macronutrient elements and heavy metals concentrations in vermicompost. Sains Malaysian. 39(5). 711-715.
3. Ahluwalia, S.S., Goyal. D., 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98. 2243-2257.
4. Ahmad, I., Ansari, I. and Aqil, F., 2005. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J. Exp. Biol., 44. 73-76.
5. Akar T, Tunali S., 2006. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol. 97(15), 1780-1787.
6. Akar, T., Tunali, S., Cabuk, 2007. A Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl. Biochem. Biotechnol. 136. 389-406.
7. Akhtar, K., Akhtar, M.W. and Khalid, A.M. 2008. Removal and recovery of Zirconium from its aqueous solution by Candida tropicalis. J. Hazard. Mater. 156. 108-117.
8. Akhtar, M.N. and P.M. Mohan., 1995. Bioremediation of toxic metal ions from polluted lake-waters and industrial effluents by fungal biosorbent. Curr. Sci. 69(12). 1030-1038.
9. Amini, M., Younesi, H. and Bahramifar, N., 2009. Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids Surf. Physicochem. Eng. Aspects. 337. 67-73.
10. Anaemene, I.A., 2012. The Use of Candida sp in the Biosorption of Heavy Metals from Industrial Effluent. Eur. J. Exp. Biol. 2. 484-488.
11. Anand, P., Isar, J., Saran, S., Saxena, R.K., 2006. Bioaccumulation of copper by Trichoderma viride. Bioresour. Technol. 97.1018-1025.
12. Asgher, M., Bhatti, H.N., Ashraf, M., Legge, R.L., 2007. Recent developments in biodegradation of industrial pollutants by white-rot fungi and their enzyme system. Biodegradation. 19. 771-783.
13. Ashida, J., 1965. Adaptation of fungi to metal toxicants. Ann. Rev. Phytopathol. 3.153-174.
14. Ashok Kumar, Bisht, B.S., Joshi, V.D., 2011. Zinc and Cadmium removal by acclimated Aspergilus niger: Trained fungus for biosorption. International Journal of Environmental Sciences and Research. 1. 27-30.
15. Ausra Zigmontiene, Indre Liberyte. 2014. Heavy metals (Cr, Cd, and Ni) concentrations in sewage sludge and bioaccumulation by Californian Earthworms in process of vermicomposting. The 9th international conference Environmental Engineering. Lithunia.
16. Bai, R.S., Abraham, T.E., 2003. Studies on chromium (VI) adsorption desorption using immobilized fungal biomass. Biores. Technol. 87 (1). 17-26.
17. Bai, S and Abraham., T.E., 2001. Biosorption of chromium (VI) from aqueous solution by Rhizopus nigricans. Bioresour. Technol. 79. 73-81.
18. Bajgai, R.C., Georgieva, N. and Lazarova, N., 2012. Bioremediation of chromium ions with filamentous yeast Trichosporon cutaneum R57. J. Biol. Earth Sci. 2. 70-75.
19. Baldrian, P., 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol. 32. 78-91.
20. Benitez, E., Nogales, R., Elvira, C., Masciandaro, G., Ceccanti, B., 1999. Enzyme activites as indicators of the stabilization of sewage sludge composting with Eisenia fetida. Biresour. Technol. 67. 297-303.
21. Beveridge, T.J., Schultze-Lam, S., 1995. Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable flocs and their contribution to mineralization”, In: Allen, H.E., Huang, C.P., Bailey, G.W. (Eds), Metal speciation and contamination of soil. CRC Press, Boca raton, pp. 183-205.
22. Bishnoi, N.R., Kumar, R., Bishnoi, K., 2007. Biosorption of Cr(VI) with Trichoderma viride immobilized fungal biomass and cell free Caalginate beads. Indian. J. Exp. Biol. 45(7). 657- 664.
23. Brierley C.L., Brierley, J.A., 1993. Immobilization of Biomass for Industrial Application of Biosorption, In: Torma AE, Apel ML, Brierley CL, Warren dale PA, Biohyrometallurgy Technologies, the Minerals, Metals and Materials Society.
24. Bumpus, J.A., Tlon, M., Wright, D., Aust, S.D., 1985. Oxidation of persistent environmental pollutants by white rot fungus. Science. 228. 1434-1436.
25. Chandrakar, V., Verma, P. and Jamaluddin., 2012. Removal of cu and zn by fungi in municipal sewage water. Int. J. Adv. Biotechnol. Res. 2. 787-790.
26. Chaudhari, P.S., Bhattacharjee, G., 2002. Capacity of various experimental diets to support biomass and reproduction of Perionyx excavates. Biores. Technol. 82. 47-150.
27. Chen G, Zeng G, Tang L, Du C, Jiang X, Huang G, Liu H, Shen G. 2008. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour Technol., 99(15), 7034-7040.
28. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. and Thamaraiselvi, K., 2007. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146, 270-277.
29. Kabata-Pendias and H. Pendias, 2001. Trace Metals in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 2nd edition.
30. G. M. Pierzynski, J. T. Sims, and G. F. Vance, 2000. Soils and Environmental Quality”, CRC Press, London,UK, 2nd edition.
31. S. Kuo, P. E. Heilman, and A. S. Baker, 1983. Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter. Soil Science. 135(2). 101– 109.
32. M. Kaasalainen and M. Yli-Halla, 2003. Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution. 126(2). 225–233.
33. S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu, 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution. 152(3). 686–692.
34. M. K. Zhang, Z. Y. Liu, and H.Wang, 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis. 41(7). 820–831.
35. N. T. Basta, J. A. Ryan, and R. L. Chaney, 2005. Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Journal of Environmental Quality. 34(1). 49–63, 2005.
36. Scragg, 2006. Environmental Biotechnology. Oxford University Press, Oxford, UK, 2nd edition.
37. P. Loganathan, M.J. Hedley, N.D. Grace, 2008. Pasture soils contaminated with fertilizer derived cadmium and fluoride: livestock effects. Rev. Environ. Contam. Toxicol. 192. 29–66.
38. N.S. Bolan, D.C. Adriano, R. Naidu, 2003. Role of phosphorus in immobilization and bioavailability of heavy metals in the soil–plant system. Rev. Environ. Contam. Toxicol. 177. 1–44.
39. R.A. Wuana, F.E. Okieimen, 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 1–20.
40. L. H. P. Jones and S. C. Jarvis, 1981. The fate of heavy metals.The Chemistry of Soil Processes, D. J. Green and M. H. B. Hayes, Eds., JohnWiley & Sons, New York, NY, USA. 593.
41. N.S. Bolan, M.A. Khan, J. Donaldson, D.C. Adriano, C. Matthew, 2003. Distribution and bioavailability of copper in farm effluent. Sci. Total Environ. 309. 225–236.
42. A.M. Wightwick, S.A. Salzman, S.M. Reichman, G. Allinson, N.W. Menzies, 2013. Effects of copper fungicide residues on the microbial function of vineyard soils. Environ. Sci. Pollut. Res. 20. 1574–1585.
43. E. Chopin, B. Marin, R. Mkoungafoko, A. Rigaux, M. Hopgood, E. Delannoy, B. Cances, M. Laurain, 2008. Factors affecting distribution and mobility of trace elements (Cu, Pb Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environ. Pollut. 156, 1092–1098.
44. D.A. Heemsbergen, M.J. McLaughlin, M. Whatmuff, M.S.J. Warne, K. Broos, M.J. Bell, D. Nash, G. Barry, D. Pritchard, N. Penney, 2010. Bioavailability of zinc and copper in biosolids compared to their soluble salts. Environ. Pollut.158. 1907–1915.
45. Hildebrandt, M. Guillamon, S. Lacorte, R. Tauler, D. Barcelo, 2008. Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Res. 42. 3315–3326.
46. A.M. Wightwick, S.A. Salzman, S.M. Reichman, G. Allinson, N.W. Menzies, 2010. Inter-regional variability in environmental availability of fungicide derived copper in vineyard soils: an Australian case study. J. Agric. Food Chem. 58. 449–457.
47. M. van Zwieten, G. Stovold, L. van Zwieten, 2007. Alternatives to copper for disease control in the Australian organic industry, A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 07/110.
48. X. Zhou, Z.L. He, Z.B. Liang, P.J. Stoffella, J. Fan, Y.G. Yang, C.A. Powell, 2011. Long term use of copper-containing fungicide affects microbial properties of citrus grove soils. Soil Sci. Soc. Am. J., 75, 898–906.
49. P. S. DeVolder, S. L. Brown, D. Hesterberg, and K. Pandya, 2003. Metal bioavailability and speciation in a wetland tailings repository amended with bio-solids compost, wood ash, and sulfate. Journal of Environmental Quality. 32(3). 851–864.
50. M. E. Sumner, 2000. Beneficial use of effluents, wastes, and biosolids. Communications in Soil Science and Plant Analysis. 31(11). 1701–1715.
51. USEPA, 1996. Report: recent Developments for In Situ Treatment of Metals contaminated Soils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
52. J. Shiowatana, R. G. McLaren, N. Chanmekha, and A. Samphao, (2001). Fractionation of arsenic in soil by a continuous flow sequential extraction method. Journal of Environmental Quality.30(6). 1940–1949.
53. J. Buekers, 2007. Fixation of cadmium, copper, nickel and zinc in soil: kinetics, mechanisms and its effect on metal bioavailability.Ph.D. thesis, Katholieke Universiteit Lueven, Dissertationes De Agricultura, Doctoraatsprooefschrift nr.
54. USDHHS, 1999. Toxicological profile for lead. United States Department of Health and Human Services, Atlanta, Ga, USA.
55. NSC, Lead Poisoning, National Safety Council, 2009, http:// www.nsc.org/news resources/Resources/Documents/Lead Poisoning.pdf.
56. D. R. Baldwin and W. J. Marshall, 1999. Heavy metal poisoning and its laboratory investigation. Annals of Clinical Biochemistry. 36(3). 267–300.
57. L. A. Smith, J. L. Means, A. Chen., 1995. Remedial Options for Metals-Contaminated Sites. Lewis Publishers, Boca Raton, Fla, USA.
58. Beleza, V.M., Boaventura, R.A., Almeida, M.F., 2001. Kinetics of chromium removal from spent tanning liquors using acetylene production sludge. Environmental Science and Technology. 35. 4379-4383.
59. Czako-Ver, K., Batic, M., Raspor, P., Sipicki, M., Pesti, M., 1999. Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosacchoromyces pombe. FEMS Microbiology Letters. 178. 109-115.
60. B. E. Davies and L. H. P. Jones, 1988. Micronutrients and toxic elements in Russell’s Soil Conditions and Plant Growth, A. Wild, Ed., JohnWiley & Sons; Interscience, New York, NY, USA, 11th edition. 781–814.
61. P. G. C. Campbell, 2006. Cadmium-A priority pollutant. Environmental Chemistry. 3(6). 387–388.
62. K. Weggler, M. J. McLaughlin, and R. D. Graham, 2004. Effect of Chloride in Soil Solution on the Plant Availability of Biosolid-Borne Cadmium. Journal of Environmental Quality. 33(2). 496–504.
63. S.E. Manahan, 2003. Toxicological Chemistry and Biochemistry. CRC Press, Limited Liability Company (LLC), 3rd edition.
64. CPCB. 2009. National inventory of hazardous waste generating industries & hazardous waste management system in India. http://www.indiaenvironmentportal.org.in/files/hazardous-waste_inventory_final_report_2009.pdf. Accessed 22 july 2009.
65. Damodaran, D., Gummadi, S. and RajMohan, B., 2011. Bioremediation of soil by removing heavy metals using Saccharomyces cerevisiae. 2nd International Conference on Environmental Science and Technology IPCBEE. 6 , IACSIT Press, Singapore.
66. Delgado, A., Anselmo, A.M., Novais, J.M., (1998). Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water. Environ. Res. 70. 370-375.
67. Dugal, S. and Gangawane, M., (2012). Metal tolerance and potential of Penicillium species for use in Mycoremediation. J. Chem. Pharm. Res. 4. 2362-2366.
68. Elander, R.P., Neway, O., 1989. Bioprocess technology in industrial fungi. In: Fermentation process Development of Industrial Organisms. Ed, Marcel Dekker, New York. 169 -219.
69. El-Gendy, M.M.A., Hassanein, N.M., El-Hay I.H., El-Baky, A. and Doaa, H., 2011. Evaluation of some fungal endophytes of plant potentiality as low-cost adsorbents for heavy metals uptake from aqueous solution. Aust. J. Basic Appl. Sci. 5. 466- 473.
70. Elvira, C., Goicoechea, M., Sampdro, L., Mato, S., Nogales, R., 1996. Bioconversion of solid paper-pulp mill sludge by earthworms. Biores. Technol. 75. 173-177.
71. Elvira, C., Sampedro, L., Benitez, E., Nogales, R., 1998. Vermicomposting of sludge from paper mill and dairy industries with Eisenia Andrei: a pilot scale study. Biores. Technol. 63. 205-211.
72. Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z. and Wang, X., 2008. Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 160. 655-661.
73. Faryal, R., Sultan, A., Tahir, F., Ahmed, S. and Hameed, A., 2007. Biosorption of lead by indigenous fungal strains. Pak. J. Bot. 39. 615-622.
74. Fourest, E., Canal, C., and Roux, J.C., 1994. Improvement of heavy metal biosorption by mycelia dead biomass (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogemum): pH control and cation activation. FEMS Microbiol. Review. 14. 325-332.
75. Gadd, G.M. and de Rome, L., 1988. Biosorption of copper by fungal melanine. Appl. Microbiol. Biotechnol. 29. 610-617.
76. Gadd, G.M., 1986. Fungal responses towards heavy metals. In: Herbert RA, Codd GA, Microbes in Extreme Environments. Academic Press, London.
77. Gadd, G.M., 1990. Heavy metal accumulation by bacteria and other microorganisms. J. Ann. Experi. 46, 834-840.
78. Gadd, G.M., 1992. Molecular biology and biotechnology of microbial interaction with organic and inorganic heavy metal compounds. In: Herbert, R.A., Sharp, R.J. (Eds.), Molecular Biology and Biotechnology of Extreamophiles. Blackie and Sons, Glasgow, pp.225-257.
79. Gadd, G.M., 1993. Interaction of fungi with toxic metals. New. Phytol. 12. 25-60.
80. Gadd, G.M., 1996. Role of microorganisms in the environmental fate of radionuclides. Endeavour. 20. 150-156.
81. Gadd., G.M., 1990, Fungi and yeast metal accumulation. In: Ehrlich, H.L., Brierley, C.L. (Eds.), Microbiol Mineral Recovery. McGraw-Hill, New York. pp. 249-276.
82. Galun, M., Galun, E., Siegel, B.Z., Keller, P., Lehr, H. and Siegel, S.M., 1987. Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water Air Soil Pollut. 33. 359-371.
83. Garg, V.K., Kaushik, P., 2005. Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida. Bioresour. Technol. 96. 1063-1071.
84. Ghosh, M., Chattopadhyay G.N., Baral, K., 1999. Transformation of phosphorus during vermicomposting. Biores Technol. 69. 149- 154.
85. Ghyasvand, S., Alikhani, H.A., Ardalan, M.M., Savaghebi, G.R., Hatami, S., 2008. Effect of pre-thermo composting on decrease of cadmium and lead pollution in vermicomposting of municipal solid waste by Eisenia fetida. American Eurasian J. Agric Environ Sci. 4(5). 537-540.
86. Guang Ming Zeng, DanLian Huang, GuoHe Huang, TianJue Hu, XiaoYun Jiang, ChongLing Feng, YaoNing Chen, Lin Tang, HongLiang Liu. 2007. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology. 98. 320-326.
87. Gunadi, B., Blount, C., Edward, C.A., 2002. The growth and fecundity of Eisenia foetida (savigny) in cattle solids pre-composted for different periods. Pedobiologia. 46.15-23.
88. Gunadi, B., Edwards, C.A., (2003). The effect of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia foetida (Savigny) (Lumbricidae). Pedobiologia. 47 (4). 321- 330.
89. Gunasekaran, P., Muthukrishnan, J., Rajendran, P., 2003. Microbes in Heavy Metal Remediation. Indian Journal of Experimental Biology. 4. 935-944.
90. Hait, S., Tare, V., 2011. Vermistabilization of primary sewage sludge. Bioresour. Technol. 102. 2812-2820.
91. Hala, Y.E.K. and Eman, M.E.T., 2009. Optimization of batch process parameters by response surface methodology for mycoremediation of chrome-VI by a chromium resistant strain of marine Trichoderma Viride. Am. Eurasian J. Agric. & Environ. Sci. 5. 676-681.
92. Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Haz. Mat. 169.1-15.
93. Harms, H., Schlosser, D., Wick, L.Y., 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 9. 177-192.
94. Hartenstein, R., Hartenstein, F., 1981. Physicochemical changes affected in activated sludge by the earthworm Eisenia fetida. J. Environ. Qual. 10.372-376.
95. Hossein Azarpira, Pejman Behdarvand, Kondriram Dhumal and Gorakh pondhe, 2014. Vermiremoval of macroelements and heavymetals in Municipal sewage sludge. Journal of applied science and agriculture. 9(1). 50-55.
96. Huang D, Zeng G, Feng, C, Hu S, Jiang X, Tang L, Su F, Zhang Y, Zeng, W, Liu H., 2008. Lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol. 42(13). 4946-4951.
97. Huang, C.P., Huang, C.P. and Morehart, A.L., 1990. Removal of copper (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res. 24. 433-439.
98. Huang, D.L., Zeng, G.M., Hu, T.J., Huang, G.H., 2003. Preliminary study on the application of Phanerochaete chrysosporium in composting of lignin waste. in: Proceedings of Ener. Env. Conference. Changsha. China. 907-912.
99. Huang, D.L., Zeng, G.M., Jiang, X.Y., Feng, C. L.,Yu, H.Y., Huang, G.H., and Liu, H.L., 2006. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. J. Hazard. Mater. 134. 268-276.
100. Hussein, H., Farag. S., Moawad, H., 2004. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab. J. Biotechnol. 7. 13-22.
101. Ianis, M., Tsekova, K. and Vasileva, S., 2006. Copper biosorption by Penicillium cyclopium: equilibrium and modelling study. Biotech. Bioeng. 20. 195-201.
102. Ismail, K., Akar, T. and Tunali, S., 2005. biosorption of Pb and Cu from aqueous solution by pretreated biomass of Neurospora crassa. Proc. Biochem. 40. 3550-3558.
103. Izadpanah, M., Sarrafi, R., Fazaelipoor, A. and Mosalmanzadeh, M.H., 2009. Investigation on the biological leaching of copper from chalcopyrite concentrates using moderate thermophilic bacteria. Sci. Iran. Trans. C Chem. Chem. Eng. 16(1), 54-60.
104. Joshi, P.K., Swarup, A., Maheshwari, S., Kumar, R. and Singh, N., 2011. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J. microbial. vol. 51. 482-487.
105. Junior, L.M.B., Macedo, G.R., Duarte, M.M.L., Silva, E.P. and Lobato, A.K.C.L., 2003. Biosorption of cadmium using the fungus Aspergillus niger. Braz. J. Chem. Eng. 20. 229-239.
106. Kabata-Pendias, A and Pendias, H., 2001. Trace Metals in Soils and Plants. CRC Press, Boca Raton, Fla, USA, 2nd edition.
107. Kapoor, A., Viraraghavan, T., 1998. Biosorption of heavy-metal on Aspergillus niger: effect of pretreatment. Biores. Technol. 63. 109-113.
108. Kapoor, A., Viraraghavan, T., Cullimore, D.R., 1999. Removal of heavy metals using fungus Aspergillus niger. Biores. Technol. 70. 95-104.
109. Kaur, A., Singh, J., Vig, A.P., Dhaliwal, S.S., Rup, P.J., 2010. Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge into soil conditioner. Bioresour. Technol. 101. 8192-8198.
110. Kelly, D.J.A., Budd, K., Lefebvre D.D., 2006. The biotransformation of mercury in pH-stat cultures of microfungi. Can J Bot., 84(2). 254-260.
111. Khan et al., 1998. Investigation of fungi as biosorbents for removal of metal ions from waste water. WISA Biennial conference. Cape Town.
112. Khan, A.G., 2001. Relationship between chromium biomagnifications ratio accumulation factor and mycorrhizal in plants growing on tannery effluent polluted soils”, J. Environ. International, vol. 26, 417-423.
113. Kiran, I., Akar, T., Tunali, S., 2005. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem. 40(11). 3550-3558.
114. Kumar, A., Bisht, B.S. and Joshi, V.D., 2011. Zinc and Cadmium removal by acclimated Aspergilus niger: Trained fungus for biosorption. Int. J. Environ. Sci. Res., 1, 27-30.
115. Levinskaite, L., 2001. Simultaneous effect of Ni, Cd and Cr on soil micromycetes, Biologija,13-15.
116. Li, Q.B., Wu, S.T., Liu, G., Liao, X.K., Deng, X., Sun, D.H., Hu, Y.L., Huang, Y.L., 2004. Simultaneous biosorption of cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep. Purif. Technol. 34. 135-142.
117. López Errasquín, E., Vázquez, C., 2003. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere. 50. 137-143.
118. Magyarosy, A., Laidlaw, R.D., Kilaas, R., Echer, C., Clark, D.S, Keasling, J.D., 2002. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl. Microbiol. Biotechnol. 59. 382-388.
119. Maheswari, S. and Murugesan, A.G., 2009. Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site. Environ. Technol. 30. 921- 926.
120. Majumdar, D., Patel, J., Bhatt, N., Desai, P., 2006. Emission of methane and carbon dioxide and earthworm survival during composting of pharmaceutical sludge and spent mycelia. Bioresource Technol., 97. 648-658.
121. Mehra, R.K., Winge, D.R., 1991. Metal ion resistance in fungi. Molecular mechanism and their related expression. J. Cellular. Biochem. 45. 30-40.
122. Munoz, R., Alvarez, M.T., Munoz, A., Terrazas, E., Guieysse, B., Mattisasson, B., 2006. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere. 63. 903-991.
123. Munoz, R., Guieysse, B., 2006. Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water. Res. 40. 2799-2815.
124. Nahmani, J., Hodson, M.E., Black, s., 2007. A review of studies performed to assess metal uptake by earthworm. Environmental. Pollution. 145. 402 - 424.
125. Nasseri, S., Mazaheri, A.M., Noori, S.M., Rostami, K.H., Shariat, M. and Nadafi, K., 2002. Chromium removal from tanning effluent using biomass of Aspergillus oryzae. Pak. J. Biol. Sci. 5. 1056-1059.
126. Ndegwa, P.M., Thompson, S.A., 2001. Integrating composting and vermicomposting the treatment and bioconversion of biosolids. Biores. Technol.76. 107-112.
127. Neuhauser, E.F., Loehr, R.C., Malecki, M.R., 1988. The potential of earthworms for managing sewage sludge. In: Edwards, C.A., Neuhauser, E.F. (Eds.), Earthworms in Waste and Environmental Management. SPB Academic Publishing, The Hague. 9-20.
128. Niu, H., Xu, X.S., Wang, J.H. and Volesky, B., 1993. Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol. Bioeng. 42. 785-787.
129. Pal, T.K., Bhattacharyya, S. and Basumajumdar, A., 2010. cellular distribution of bioaccumulated toxic heavy metals in Aspergillus niger and Rhizopus arrhizus. Int. J. Pharma. Bio. Sci. 1. 1-6.
130. Parle, J.N., 1963. Micro organisms in the intestine of earthworms. J. Gen. Microbiol. 31. 1-11.
131. Pattanapipitpaisal, P., Brown, N.L. and Macaskie, L.E., 2001. Chromate reduction by Microbacterium liquefaciens immobilized in polyvinyl alcohol. Biotechnol. Lett. 23. 41-43.
132. Pereira, M.G., Arruda, M.A.Z., 2003. Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. J. Braz. Chem. Society., 14. 39-47.
133. Pierzynski, G.M., Sims, J.T., and Vance, G.F., 2000. Soils and Environmental Quality. CRC Press, London,UK, 2nd edition.
134. Potin, O., C. Rafin and E. Veiguie., 2004. Bioremediation of an aged polycyclic aromatic hydrocarbon (PAHs) contaminated soil by filamentous fungi isolated from the soil international. Biodeterio Biodegrad., 54(1), 45-52.
135. Prakasham, R.S., Merrie, S., Sheela, J., Saswathi, N. and Ramakrishna, S.V., 1998. Biosorption of chromium (VI) by free and immobilized Rhizopus arrhizus. Environ. pollut., 104, 421-427.
136. Prasad, A.S., Varatharaju, G., Anushri, C. and Dhivyasree, S., 2013. Biosorption of Lead by Pleurotus florida and Trichoderma viride. Brit. Biotechnol. J. 3. 66-78.
137. Prasenjit, B. and Sumathi, S., 2005. Uptake of chromium by Aspergillus foetidus. J. Mater. Cycles Waste Manage, 7, 88-92.
138. Price, M.S., Classen, J.J., Payne, G.A., 2001. Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresour. Technol. 77. 41-49.
139. Priya Kaushik, VK Garg., 2003. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia fetida. Bioresource Technology. 9(3). 311-316.
140. Qazilbash, A.A., 2004. Isolation and Characterization of Heavy Metal Tolerant Biota from Industrially Polluted Soils and Their Role in Bioremediation. Biological. Sci. 41. 210-256.
141. Rajiv K Sinha, Sunil Heart, Gokul Bharambe, Ashish Brahambhatt. 2009. Vermistabilization of sewage sludge (biosolids) by earthworm: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms. Griffith School of Engineering (Environment), Griffith University, Australia.
142. Rajiv singh and Das S.C., 2005. Vermicomposting: An excellent way to recycle forest waste. Proceedings of National conference of Frontiers in Environmental Sciences and Engineering in India. Department of Env.Sc. Bharathiar University. Coimbatore. India. 75.
143. Ramasamy, R.K., Congeevaram, S. and Thamaraiselvi, K., 2011. Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal pb (II) ions and fungal protein molecular characterization- a mycoremediation approach. Asian J. Exp. Biol. Sci., vol. 2, pp. 342-247.
144. Ramesh, M., Subramanian, K., Kishore kumar, P., 2014. Fungal Biosorption of Heavy Metals from Industrial Waste. Asian Journal of Medical and Pharmaceutical Sciences. 2(2). 179-183.
145. Rao, C.R.N., Iyengar, L. and Venkobachar, C., 1993. Sorption of Copper from aqueous phase by waste biomass. J. Environ. Eng. 119. 369-377.
146. Rao, K.R., Rashmi, K., Latha, J.N.L. and Maruthi, M.P., 2005. Bioremediation of toxic metal ions using biomass of Aspergillus fumigatus from fermentative waste. Indian J. Biotechnol. 4.139-143.
147. Ravindran, B., Dinesh, S.L., Kennedy, L.J., Sekaran, G., 2008. Vermicomposting of solid waste generated from leather industries using epigeic earthworm Eisenia fetida. Appl. Biochem Biotechnol. 151. 480-488.
148. Ravindran, R., Sekaran, G., 2011. Bacterial composting of animal fleshing generated from tannery industries. Waste Manage. 30. 2622-2630.
149. Remacle, J., 1990. The cell wall and heavy metals. In: Volesky B, Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida.
150. Romero, M.C., Reinoso, E.H., Urrutia, M.I. and Kiernan, A.M., 2006. Biosorption of heavy metals by Talaromyces helicus: a trained fungus for copper and biphenyl detoxification. Electron. J. Biotechnol. 9. 221-226.
151. Ross, I.S., 1975. Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc. 64. 175-193.
152. Salem, H.M., Eweida, E.A., and Farag, A., 2000. Heavy metals in drinking water and their environmental impact on human health”, In ICEHM 2000, Cairo University: Giza, Egypt, 542-556.
153. Sarkar, S., Satheshkumar, A., Jayanthi, R. and Premkumar, R., 2010. Biosorption of Nickel by live biomass of Trichoderma harzianum. Res. J. Agr. Sci. 1. 69-74.
154. Say, R., Yilmaz, N. and Denizli, A., 2003. Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt. Sci. Technol. 21. 643-650.
155. Seema Dwivedi, Anuradha Mishra, Devendra Saini. 2012, “Removal of Heavy Metals in Liquid Media through Fungi Isolated from Waste Water”, International Journal of Science and Research, 1, 181-185.
156. Sen, B., Chandra, T.S., 2007. Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes. Bioresour. Technol. 98, 1680-1683.
157. Sen, M. and Dastidar, M.G., 2007. Biosorption of Cr (VI) by resting cells of Aspergillus sp. Iran. J. Environ. Health Sci. Eng. 4. 9-12.
158. Sen, M. and Dastidar, M.G., 2010. Adsorption desorption studies on Cr (VI) using nonliving fungal biomass. Asian J. chem., 22. 2331-2338.
159. Seshikala, D. and Charya, M.A.S., 2012. Effect of pH on Chromium biosorption. Int. J. Pharma. Bio.Sci. 2. 298-302.
160. Shaheen Zafar, Farrukh Aqil, Iqbal Ahmad. 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98. 2557-2561.
161. Shahmansouri, M.R., Pourmoghadas, H., Parvaresh, A.R., Alidadi, H., 2005. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida) in the Sewage Sludge Vermicomposting. Iranian. J. Env. Health Sci. Eng. 2 (1). 28-32.
162. Shankar Congeevaram, Sridevi Dhanarani, Joonhong Park, Michael Dexilin, Kaliannan Thamaraiselvi. 2007. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials. 146. 270-277.
163. Shoaib, A., Aslam, N. and Aslam, N., 2012. Myco and Phyto Remediation of Heavy metals from aqueous solution. Onl. J. Sci. Technol. 2. 35-40.
164. Siddiquee, S., Aishah, S.N., Azad, S.A., Shafawati, S.N., Naher, L., 2013. Tolerance and Biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Adv. Biosci. Biotechnol. 4. 570-583.
165. Singh, J., Kaur, A., Vig, A.P., Rup, P.J., 2008. Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicol. Environ. Saf. 73. 430-435.
166. Skowronski, T., Pirszel, J. and Pawlik-Skwronska, B., 2001. Heavy metal removal by the waste biomass of Penicillium chrysogenum. Water Pollut. Res. J. Can., 36, 793-803.
167. Spugeon, D.J and Hopkin, S.P., 1999a. Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl. Soil. Ecol., 11/3. 227-243.
168. Sulata Maity, Sonali Roy, Shelley Bhattacharya and Shibani Chaudhury. 2010. Accumulation of lead and zinc in earthworm Lampito Mauritii (Kinberg): Effect on survival, growth and Acetycholinesterase activity. Recent Research in Science and Technology. 2(4). 46-53.
169. Surindra Suthar, N., Poonam Sajwan, Kapil Kumar. 2014. Vermiremediation of heavy metals in wastewater sludge from paper and pulp industry using earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 109. 177-184.
170. Suthar, S., 2006. Potential utilization of guar gum industrial waste in vermicompost production. Bioresour. Technol. 97. 2474-2477.
171. Suthar, S., 2010. Recycling of agro-industrial sludge through vermitechnology. Ecol. Eng. 36. 1028-1036.
172. Suthar, S., Singh, S., 2008. Feasibility of vermicomposting in bio-stabilization of sludge from a distillery industry. Sci. Total. Environ. 394. 237-243.
173. Swathi Pattnaik and M. Vikram Reddy. 2009. Nutrient status of vermicompost of urban green waste processed by three earthworm species- Eisenia fetida, Eudrilus eugeniae and perionyx excavates. Applied and Environmental soil science. 2010, 1- 13.
174. Tahir, A., 2012. Resistant fungal biodiversity of electroplating effluent and their metal tolerance index. (Ed) D Sebayang, ISBN: 978-953-51-0471-1, Available from: http://www.intechopen.com
175. Tan, T. and Cheng, P., 2003. Biosorption of metal ions with Penicillium chrysogenum. Appl. Biochem. Biotechnol. 104. 119-128.
176. Terres, E., Cid, A., Herrero, C., Abalde, J., 1998. Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Biores. Technol. 63. 213-220.
177. Teskova, K. and G. Petrov., 2004. Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane- bound form Zeits fur Natur for schung, vol. 57(7-8), 629-633.
178. Thippeswamy, B., Shivakumar, C.K. and Krishnappa, M., 2012b. Accumulation potency of heavy metals by saccharomyces sp. indigenous to paper mill effluent. J. Environ. Res. Dev. 6. 439-445.
179. Thippeswamy, B., Shivkumar, C.K. and Krishnappa, M., 2012. Bioaccumulation potential of Aspergillus niger and Aspergillus flavus for removal of heavy metals from paper mill effluent. J. Environ. Biol., 33, 1063-1068.
180. Townsley, C.C. and Ross, I.S., 1985. Copper uptake by Penicillium spinulosum. Microbes. 44. 125-134.
181. Toyota, K., Kirmura, M., 2000. Microbial community indegious to the earthworm Eisenia fetida. Biol. Fert. Soils. 31. 187-190.
182. Tsezos, M. and Volesky, B., 1981. Biosorption of uranium and thorium. Biotechnol Bioeng. 23. 583-604.
183. Tunali, S., Akar, T., 2006. Zn (II) biosorption properties of Botrytis cinerea biomass. J Hazard Mater. 131(1-3). 137-145.
184. Tunali, S., Akar, T., Oezcan, A.S., Kiran, I., Oezcan. 2006. A Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep”, Purif Technol. 47(3). 105-112.
185. Valls, M., de Lorenzo, V., 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev., 26. 327-338.
186. Vankar, P.S. and Bajpai, D., 2007. Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species. Presented at the conference on Desalination and the Environment. Sponsored by the European Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort, Halkidiki, Greece. pp 22-25.
187. Varshney, R., Bhadauria, S. and Gaur, M.S., 2010. Biosorption of Copper (II) from electroplating wastewaters by Aspergillus terreus and its kinetics studies. Water. 2. 142-151.
188. Velmurugan, N., Hwang, G., Muthuswamy, S.K., Choi, T.K., Kui-Jae, L., Byung-Taek, O. and Yang-Soo, L., 2010. Isolation, identification, Pb (II) biosorption isotherms and kinetics of a lead adsorbing Penicillium sp. MRF-1 from South Korean mine soil. J. Environ. Sci. 22. 1049-1056.
189. Venkobacher, C., 1990. Metal removal by waste biomass to upgrade wastewater treatment plants. Water Sci. Technol. 22. 319-320.
190. Volesky, B., 1990, “Biosorption and biosorbents”, In: Biosorption of Heavy Metals, CRC Press, Boston.
191. Volesky, B., 1992. Removal of heavy metals by biosorption in harnessing biotechnology for the 21st century. (Eds) MR Ladisch and A Bose, American chemical society, Washington, DC.
192. Volesky, B., 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14. 291-302.
193. Yang, J., Wang, Qu., Wang, Q. and Wu, T., 2009. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger. Bioresour. Technol. 100(1), 254-260.
194. Yazdani, M., Chee, K.Y., Faridah, A., Soon, G.T., 2010. An in vitro study on the Adsorption, Absorption and uptake Capacity of Zn by the Bioremediator Trichoderma atroviride. Environ. Asia. 3. 53-59.
195. Yazdani, M., Yap, C.K., Abdullah, F. and Tan, S.G., 2010. An in vitro Study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride. Environ. Asia. 3. 53-59.
196. Yetis, U., Dolek, A., Dilek, F.B., Ozcengiz, G., 2000. The removal of Pb(II) by Phanerochaete chrysosporium. Water Res. 34. 4090-4100.
197. Zafar, S., Aqil, F. and Ahmad, I., 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil, Biores. Technol., 98, 2557-2561.
198. Zeng, G.M., Huang, D. L., Huang, G. H., Hu, T. J., Jiang, X.Y., Feng, C. L., Chen, Y. N., Tang L., Liu, H.L., 2007. Composting of lead-contaminated solid waste with inoculums of white-rot fungus. Bioresour. Technol. 98. 320 -326.
199. Zorn, M.I., Van Gestel, C.A.M., Eijsackers, H., 2005. The effects of two endogenic earthworm species on zinc distribution and availability in artificial soil columns. Soil. Biochem. 37. 917-925.

Downloads

Published

2017-03-29

How to Cite

S, G., M, T., & V. M, S. (2017). DIMINUTION OF HEAVY METALS IN INDUSTRIAL SOLID WASTE BY AN AMALGAMATION OF MYCO AND VERMI REMEDIATION. JOURNAL OF ADVANCES IN CHEMISTRY, 13(11), 6018–6037. https://doi.org/10.24297/jac.v13i11.5770

Issue

Section

Articles