Effect of Ni doping on structural, optical and photocatalytic properties of Zn1-XNiXO nanoparticles prepared by different pH conditions

DOI:

https://doi.org/10.24297/jac.v12i6.5524

Keywords:

ZnO nanocrystal, Thiazolopyrimidine, Ni doped ZnO, Michael addition, Photocatalytic activity, uracil, Methylene Blue, annulation, dinucleophiles, benzodiazepine, triazepine, antitumor activity

Abstract

Zn1-XNiXO (x = 0.00, 0.02, 0.04 & 0.06 mol %) nanoparticles were prepared by simple co-precipitation method. The influences of Ni doping on structure, morphology, optical and photocatalytic properties were investigated by means of Xray diffraction, scanning electron microscopy, UV–Vis spectrophotometer and photochemical reaction method. The obtained result shows that the prepared ZnO nanocrystals were hexagonal wurtzite structure and the average crystallite size decreases with increase of Ni doping. The increase of visible light absorption and increase of band gap were found with the increase of Ni doping concentration, which enable the sample harvest more photons to excite the electron from valence band. The photocatalytic properties of Ni doped ZnO nanocrystals shows enhanced activity that the pure ZnO nanocrystals. The photocatalytic activities were not significantly affected by the particle size and 0.04% Ni doped ZnO nanocrystals shows best catalytic activity than the other catalysts.

Downloads

Download data is not yet available.

References

[1] S. Malato, J. Blanco, D.C.Alarcon, M.I.Maldonado, P.Fernandez-Ibanez, W.Gernjak, Catal Today 122, (2007)
137-149
[2] S.K.Kansal, M.Singh, D.Sud, J Hazard Mater 141, (2007), 581.
[3] M.Hoffman, S.Martin, W.Choi, D.Bahnemann, Chem Rev 95, (1995), 69
[4] D.Beydoun, R.Amal, G.Low, S.McEvoy, J Nanopart Res 1, (1999), 439
[5] J.B. Zhong, J.Z. Li, Y. Lu, X.Y. He, J. Zeng, W. Hu, Y.C. Shen, Appl. Surf. Sci. 58, (2012), 4929
[6] J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, J. Hazard. Mater. 172, (2009), 1520
[7] A. Omidi, A. Habibi-Yangjeh, M. Pirhashemi, Appl. Surf. Sci. 276, (2013), 468
[8] L.Y.Yang, S.Y.Dong, J.H.Sun, J.L.Feng, Q.H.Wu, S.P.Sun, J Hazard Mater 179, (2010) 438
[9] J.C.Lee, S.Park, H.J. Park, J.H. Lee, H.S.Kim, Y.J.Chung, J Electroceram 22, (2009), 110
[10] E.R.Carraway, A.J.Hoffman, M. Hoffmann, Environ Sci Technol 28, (1994), 786
[11] I. Poulios, D. Makri, X. Prohaska, Int Journal 1, (1999), 55
[12] B. Pall, M. Sharon, Mater Chem Phys 76, (2002), 82.
[13] N. Serpone, A. V. Emeline, J. Phys. Chem. Lett., 3, (2013), 673
[14] J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Superlattices Microstruct. 50, (2011), 98–106
[15] P.K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, D.K. Singh, P.K. Iyer, J. Nanosci. Nanotechnol. 11, (2011),
1–6
[16] K. Suresh Babu, V. Narayanan, Chem Sci Trans., 2, (2013), 33-36
[17] G. Ambrozic, Z.C. Orel, M. Zigon, Mater. Technol. 45, (2011) 173–177
[18] S. Xiao, L. Liu, J. Lian, J. Mater. Sci.: Mater. Electron. 25, (2014), 5518–5523
[19] C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K.
Gaurav, L. Karthik, K.V. Bhaskara Rao, Spectrochim. Acta Part A. 90, (2012), 78–84
[20] J. Yang, X. Wang, T. Jiang, Y. Li, Q. Ma, J. Han, J. Chen, J. Wang, Y. Wang, Superlattices Microstruct. 72,
(2014), 91-101
[21] D. Han, J. Cao, S. Yang, J. Yang, B. Wang, Q. Liu, T. Wang, H. Niu, J. Mater. Sci.: Mater. Electron. 26
(2015), 7415-7420
[22] S. Gao, S. Jiao, B. Lei, H. Li, J. Wang, Q. Yu, D. Wang, F. Guo, L. Zhao, J. Mater. Sci.: Mater. Electron. 26
(2015), 1018–1022
[23] S. Suwanboon, S. Klubnuan, N. Jantha, P. Amornpitoksuk, P. Bangrak, Mater. Lett. 115, (2014), 275
[24] O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett. 90, (2013), 83
[25] L. Shi, L. Liang, J. Ma, Y. Meng, S. Zhong, F. Wang, J. Sun, Ceram. Int. 40, (2014), 3495
[26] B.M. Rajbongshi, S.K. Samdarshi, Appl. Catal. B 144, (2014), 435
[27] J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, Y. Zhang, Mater. Res. Bull. 46, (2011),
1207
[28] K.G. Kanade, B.B. Kale, J.O. Baeg, S.M. Lee, C.W. Lee, S.J. Moon, H. Chang, Mater. Chem. Phys. 102,
(2007), 98
[29] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Chemosphere 91, (2013), 1604
[30] K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Microporous Mesoporous Mater. 134, (2010), 195
[31] M.F.Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Appl. Surf. Sci. 258, (2011), 1587
[32] Z. Yang, Z. Ye, Z. Xu, B. Zhao, Physica E 42, (2009), 116–119
[33] A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M.
Nagabhushana, J. Alloys Comp. 509, (2011), 5349–5355
[34] M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Comp. 509 (2011), 8378–8381
[35] D. Anbuselvan, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci.: Mater. Electron. 25, (2014), 2004–2015
[36] Sadtler, Research Laboratories (Eds.), The Infrared Spectra Handbook of Inorganic Compounds, Heyden &
Son Ltd, London, 1984.
[37] C.Aydın, M.S. Abd El-Sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, (2013), 447–
452
[38] F. Zhang, Y. J. Liu, X. C. Xiao, X. Y. Cai, H. Li, Y. D. Wang, Materials Technology 27, (2012), 196–206
[39] M. Swaminathan, N. Shobana, Journal of separation and purification technology 56, (2007), 101-107
[40] S. K. Kansal, M. Singh, D. Sud, Journal of hazardous materials 141, (2007), 581-590
[41] S. Dong, K. Xu, J. Liu, H. Cui, Phys. B 406, (2011), 3609

Downloads

Published

2013-08-30

How to Cite

Effect of Ni doping on structural, optical and photocatalytic properties of Zn1-XNiXO nanoparticles prepared by different pH conditions. (2013). JOURNAL OF ADVANCES IN CHEMISTRY, 12(6), 4097–4107. https://doi.org/10.24297/jac.v12i6.5524

Issue

Section

Articles