Synthesis, Crystal Structure, and Infrared Spectroscopy of a novel hydronium trihydrate hybrid compound: (C6H22N4)2H9O4CdCl6CdCl5Cl2
DOI:
https://doi.org/10.24297/jac.v10i1.5586Keywords:
X-ray diffraction, Crystal structure, IR spectroscopy, Trihydrated hydronium ion, trigonal pyramidal configuration of [Cl•••H4], DFT calculationsAbstract
A 0-dimensional (0D) hybrid compound, (C6H22N4)2H9O4CdCl6CdCl5Cl2 has been prepared by a facile conventional evaporation method. The crystal packing of discrete constituents of [Cd(1)Cl6] octahedra, [Cd(2)Cl5] trigonal bipyramids, Cl– ions, protonated tris(2-aminoethyl)amine molecules ([(C2H7N)3NH]4+) and H9O4+ ions, is stabilized by diverse hydrogen bonds of N-H···Cl, C-H···Cl and C-H···O. Uncommonly, an isolated chlorine ion (i.e. Cl(4)) is fixed at a special position at 12c(3.) by hydrogen bonds from four surrounding hydrogen atoms at a trigonal pyramidal configuration whereas other chlorine atoms Cl(1), Cl(2) and Cl(3) are stabilized by hydrogen bonds from 2, 2 and 3 hydrogen atoms at bifurcated, linear and trigonal configurations, respectively. The ordered arrangement of [Cl(4) [Cl(4)···H4] trigonal pyramidal configuration upward or downward is responsible for the long c-axis of the title compound. Additionally, a H9O4+ ion is entangled with symmetry restriction and half occupancy. All these features of the title compound add our new knowledge about hydrogen bonds.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.