VIBRATIONAL SPECTRA, NBO, HOMO-LUMO ANALYSES OF FURFURAL SEMICARBAZONE
DOI:
https://doi.org/10.24297/jac.v12i15.2741Keywords:
DFT, Natural Bond Orbital (NBO) analysis, , HOMO and LUMO, Fukui functionsAbstract
The molecular structure and vibrational spectra of Furfural Semicarbazone (FSC) have been calculated with the help of density fuctional theory (DFT) using 6-31++G(d,p) and 6-311++G(d,p) basis sets. The solid phase FT-IR and FT-Raman spectra of furfural semicarbazone have been recorded in the range 4000-400cm-1 and 4000-100 cm-1, respectively. On the basis of B3LYP calculations, the normal coordinate analysis has been performed to assign the vibrational fundamental frequencies according to potential energy distribution. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman Scattering activities were calculated by density functional theory (DFT/B3LYP) method with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wave number values of most of the fundamentals is very small. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using Natural Bond Orbital (NBO) analysis. The electro dipole moment (μ) and first hyperpolarizability (β) values of the investigated molecule are computed using Scaled Quantum Mechanical Force field (SQMF) method. Besides, HOMO and LUMO analysis and Fukui functions of the title molecule have also been calculated using DFT method.
Downloads
References
2. Pulay, P, Fogarasi, G, Pongar, G, Boggs, JE & Vargha, A 1983, ‘Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants – scaled quantum-mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde and ethylene’, J.Am. Chem.soc, vol.105, pp.7037-7047.
3. Fogarasi, G, Pulay, P & During, JR 1985, ‘Ab initio Calculation of Force Fields and Vibrational Spectra, in: Vibrational Spectra and Structure’, ed. J. R. Durig (Elsevier, Amsterdam), vol.14, pp.125-219.
4. Sundius, T 2002, ‘Scaling of ab initio force fields by MOLVIB’, Vib. Spectrosc, vol. 29, pp. 89–95.
5. Lee, C, Yang, W & Parr, RG 1988, ‘Development of the Colle-Salvetti conelation energy formula into a functional of the electron density’, Phys. Rev, vol. B 37, pp. 785-789.
6. Olszak, TA, Peteres, OM, Blaton, NM & De Ranter CJ 1995, ‘5-Nitro-2-furaldehyde semicarbazone’, Acta Crystalogr, vol. C51, pp.1304-1306.
7. Keresztury, G, Chalmers, JM & Griffiths, PR 2002, ‘Raman Spectroscopy; Theory in Handbook of Vibrational Spectroscopy’. John Wiley and Sons Ltd, vol.17.
8. Glendening, ED, Reed, AE, Carpenter, JE & Weinhold, F 1998, ‘Introduction to Infrared and Raman Spectroscopy’, NBO Version 3.1. TCI, University of Wisconsin, Madison.
9. Klots, TD, Chirico, RD & Steele, WV 1994, ‘Complete vapor phase assignment for the fundamental vibrations of furan, pyrrole and thiophene’, Spectrochimica Acta Part A, vol. 50, no.4, pp.765-795.
10. Bambagiooti, M, Castellucci, E & Sbrana, G 1974, ‘Vibrational spectra and crystal structure of 2, 2’-bifurane’, Spectrochimica Acta Part A,
vol.30, pp.1413-1424.
11. Zinczuk, J, Ledasma, AE, Brandhan, SA, Piro, OE, Gonzalez, JJL & Atabef, AB 2009, ‘Structural and vibrational study of 2-(2′- furyl)-4,
5-1 H-dihydroimidazole’, J Phy Org Chem, vol.22, no.12, pp.1166–1177.
12. Rastogi, VK, Palafox, MA, Tanwar, RP & Mittal, L 2002,
‘3, 5-Difluorobenzonitrile: Ab initio calculations, FTIR and Raman spectra’, Spectrochim. Acta, vol. A58, no.9, pp. 1987–2004.
13. Arivazhagan, M, Sambath Kumar, K & Jeyavijan, S 2010, ‘Density functional theory study of FT-IR and FT-Raman spectra of 7-acetoxy-4-methyl coumarin’, Indian J pure & Appl Phys, vol. 48, no. 10, pp. 716-722.
14. Zhang, R, Du, B, Sun, G & Sun, YX 2010, ‘Experimental
and theoretical studies on o-, m- and p-chlorobenzylidene aminoantipyrines’, Spectrochim. Acta, vol. 75, pp. 1115-1124.
15. Silverstein, RM & Webster, FX 2003, ‘Spectrometric Indentifition of Organic compounds’, Sixth edu (John wiley, Inc, New York).
16. Dani, VR 1995, ‘Organic spectroscopy’, Tata-McGraw Hill publishing Company, New Delhi, pp. 86-168.
17. Socrates, G 2001, ‘Infrared and Raman characteristic group frequencies- Tables and Charts, wiley, Chichester’.
18. Reed, AE, Curtiss, LA & Weinhold, F 1988, ‘Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint’, Chem Rev, vol.88, pp.899-926.
19. Choo, J, Kim, S, Joo, H & Kwon, Y 2002, ‘Molecular structures of (trifluoromethyl) iodine dihalides CF3IX2 (X=F, Cl): ab initio and DFT calculations’, J. mol.struct. (Theochem), vol. 587, pp 1-8.
20. Luque, FJ, Lopez, JM & Orozco, M 2000, ‘Perspective on Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Theory’ Chem. Acc, vol.103, pp.343-345.
21. Okulik, N & Jubert, AH 2005, ‘Theoretical Analysis of the Reactive Sites of Non–steroidal Anti–inflammatory Drugs’, Internet Electr. J. Mol. Des, pp.4–17.
22. Ravi Kumar, C, Joe, IH & Jaya Kumar, VS 2008, ‘Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: A vibrational approach’, Chem Phys Lett, vol. 460, pp. 552-558.
23. Dixon, A, David, Chang-Guo Zhan, Jeffrey, A & Nicholas 2003, ‘Ionization Potential, Electron Affinity, Electrone gativity, Hardness, and Electron Excitation Energy:  Molecular Properties from Density Functional Theory Orbital Energies’, J-Phys-Chem., vol. A.107, and pp. 4184-4195.
24. Huizar, LH, Mendoza & Reyes Clara, HR 2011, ‘Chemical Reactivity of Atrazine Employing the Fukui Function, J. Mex. Chem. Soc’,
vol. 55, no.3, pp.172-184.
25. Roy, RK, Pal, S & Hirao, K 1999, ‘On Non-Negativity of Fukui Function Indices’, J. Chem. Phys, vol.110, pp.8236-8245.
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.