A bi-objective algorithm for a reactive multi-skill project scheduling problem

Authors

  • Cheikh Dhib Université des Sciences de Technologie et de Medecine, Route NDB, Nouakchott
  • Ameur Soukhal Université François Rabelais, tours
  • Emmanuel Néron Université François Rabelais, tours
  • Hafedh Mohamed-Babou Ecole de Mines de Mauritanie
  • Bedine Kerim Albaha University, college of computer science and IT, Department of computer science bkerim@bu.edu.sa,

DOI:

https://doi.org/10.24297/ijct.v15i11.4366

Keywords:

Scheduling, project scheduling, resource staffing, linear programming, mata-huristics, genetic algorithms

Abstract

The aim of this paper is to present project scheduling problem met in a an industrial context. The focus is mainly to the reactive model. In fact, the predictive case was studied in previous works, and this paper presents a solution for a reactive version of the model studied before. We proposed a linear mathematical model for the problem and then we show that this model cannot be used in practice to the solve problem. Then we present a bi-objectve genetic algorithm proposed to solve this problem. Experiment results are provided also.

Downloads

Download data is not yet available.

References

I. Artigues, C., & Roubellat, F. (2000). A polynomial activity insertion algorithm in a multi-resource schedule with
cumulative constraints and multiple modes. European Journal of Operational Research, 127 (2), pp. 294-316.
II. Ballestın, F., & Blanco, R. (2011, 1). Theoretical and practical fundamentals for multi-objective optimisation in
resource-constrained project scheduling problems. Computers & Operations Research , pp. 51-62.
III. Bellenguez-Morineau, O., & Néron, E. (2007). A branch-and-bound method for solving multi-skill scheduling
problem. RAIRO Operations Research (41(2)), pp. 155-170.
IV. Bellenguez-Morineau, O., & Néron, E. (2004). Lower bounds for the multi-skill project scheduling problem with
hierarchical levels of skills. Practice and Theory of Automated Timetabling (PATAT2004), (pp. 429-432.).
V. Billaut, J., Moukrim, A., & Sanlaville, E. (2010). Flexibility and Robustness in Scheduling. Control systems,
robotics and manufacturing series. Wiley.
VI. Blazewicz, J., Lenstra, J., & Rinnooy, K. (1983). Scheduling subject to resource constraints: Classification and
complexity. Discrete Applied Mathematics (5(1)), pp. 11-24.
VII. Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained
project scheduling. Computers and Industrial Engineering (55(1)), pp. 183–194.
VIII. Deb, K., Agrawal, S., Pratap, A., & Meyariva, T. (2000). A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II. Technical report, Kanpur Genetic Algorithms Laboratory (Kan-GAL), Indian
Institute of Technolog.
IX. Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resourceconstrained
project scheduling problem. European Journal of Operational Research (38(12)), pp. 1803-1818.
X. Demeulemeester, E., & Herroelen, W. (1997). New benchmark results for the resource-constrained project
scheduling problem. Management Science, 43 (11), pp. 1485-1492.
XI. Drezet, L.-E. (2005). Résolution d’un problème de gestion de projets sous contraintes de ressources humaines:
de l’approche prédictive a l’approche réactive.PhD thesis, University of Tours.
XII. Hartmann, S. (1998). A competitive genetic algorithm for resource constrained project scheduling. Naval
Research Logistics (45(7)), pp. 733-750.
XIII. Sprecher, A., & Drexl, A. (1998). Multi-mode resource-constrained project scheduling by a simple, general and
powerful sequencing algorithm. European Journal of Operational Research, 2 (107), pp. 431-450.
XIV. Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007). A classification of predictive-reactive project
scheduling procedures. Journal of Scheduling (10(3)), pp. 195-207.
XV. Van Veldhuizen, D., & Lamont, G. (2000). On measuring multi-objective evolutionary algorithm performance.
Congress of evolutionary computation, (pp. 204-211).
XVI. Walter, M., & Zimmermann, J. (2010). Staffing projects with multi-skilled workers in matrix organisations. 12th
International Workshop on Project Management and Scheduling (PMS2010), (pp. 387-391).
XVII. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., & Grunert da Fon-seca, V. (2003). Performance assessment of
multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7 (2), pp.
117-132.
XVIII. Dhib, C., Soukhal, A., & Néron, E. (2013). Etude et résolution de problèmes d’ordonnancement de projets multicompétences
: intégration à un progiciel intégré libre . PhD thesis, University of Tours.
XIX. Dhib, C., Soukhal, A., & Néron, E. (2011a). A multi-skill project scheduling problem in an industrial context.
International conference in Industrial and Systems Engineering Proceedings, (pp. 316-325).
XX. Dhib, C., Kooli, A., Soukhal, A., & Néron, E. (2011b). Lower bounds for a multi-skill scheduling problem.
Operations Research Proceedings, (pp. 471-476).
XXI. Dhib, C., Soukhal, A. , & Néron, E. (2014). Lower Mixed-Integer Linear Programming Formulation and Priority-
Rule Methods for a Preemptive Project Staffing and Scheduling Problem. Handbook on Project Management and
Scheduling , (pp. 603-617).

Downloads

Published

2016-09-21

How to Cite

Dhib, C., Soukhal, A., Néron, E., Mohamed-Babou, H., & Kerim, B. (2016). A bi-objective algorithm for a reactive multi-skill project scheduling problem. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 15(11), 7202–7212. https://doi.org/10.24297/ijct.v15i11.4366

Issue

Section

Research Articles