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ABSTRACT 

The aim of this paper is to present project scheduling problem met in a an industrial context. The focus is mainly to the 
reactive model. In fact, the predictive case was studied in previous works, and this paper presents a solution for a reactive 
version of the model studied before. We proposed a linear mathematical model for the problem and then we show that this 
model cannot be used in practice to the solve problem. Then we present a bi-objectve genetic algorithm proposed to solve 
this problem. Experiment results are provided also. 
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INTRODUCTION 

Project scheduling problems are among the most studied scheduling problems in the literature. Resource Constrained 
Project Scheduling Problem is the most classical version of these problems. In the RCPSP, a set of non-preemptable 
activities have to be processed. Activities require a given amount of each resource to be processed. Resources are 
available in limited amount. Activities are submitted to classical end-to-start precedence relationship. This problem is 
known to be NP-Hard (Blazewicz, Lenstra, & Rinnooy, 1983)and several states of the art can be found dealing with 
RCPSP (Demeulemeester & Herroelen, 1997). 

Resource modeling has been one fruitful research direction for new project scheduling models. Resources can be 
renewable, non renewable or doubly constrained. Moreover resource requirements of activities may differ from one mode 
to another. These types of resources are modelled in the Multi-Mode Resource Constrained Project Scheduling problem  
(Sprecher & Drexl, 1998) (Hartmann, 1998). Several methods for solving MM-RCPSP have been proposed including exact 
methods such as branch-and-bound and heuristics.  

Recently, authors have proposed to enlarge RCPSP model to take into account the notion of skills, i.e, staff members 
involved in the project realization can contribute only to a given subset of activities. This is known as the Multi-Skill Project 
Scheduling Problem (Bellenguez-Morineau & Néron, 2007) (Bellenguez-Morineau & Néron, 2004).  

Resources considered are human resources, i.e. staff members, each of them are able to perform more than one kind of 
activities. This model is useful in several industrial contexts, and for instance in the context of IT companies where human 
resources are the most constrained resources. Moreover, availability periods are considered for staff members. This 
extension can be seen as a special case of Multi-mode RCPSP, but having potentially a huge number of modes per 
activity.  

Recently several studies focus on of skill constraints, in a context of project scheduling (Walter & Zimmermann, 2010). 
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The industrial context underlying this paper is slightly different than the one addressed before. This work is a joint work 
with a company contributing on an open-source ERP platform. According to their need and some specificities encountered 
in the context of project scheduling embedded within a generic framework, we have defined a model for project 
scheduling.  

Main differences between the model addressed in this paper and the MultiSkill Project Scheduling Problem are : 

 Activities can be either preemptive or non preemptive. This is a key point of the model. On most of real-life 

projects, some activities can be interrupted without any penalties, (such as writing documentation, archiving etc), 
whereas some activities cannot be interrupted.  

 In the case of preemption,the resource assigned to one skill for one activity must be the one that 
completes the activity after the preemption. This constraint is used to limit the preemption effect on the project 

organization, thus we do not consider non-resumable or semi-resumable activities, that would be implies by the 
fact that a person has to redo a part of the activity.  

 Exactly one resource is required for each skill for one activity. This is mainly due to management of the 

project. Moreover in the case where several resources can contribute to the same skill, the problem of the 
workload estimation becomes hard. Notice that this constraint is relevant in the context of small and medium size 
projects.  

 All part of one activity, each corresponding to one skill required for this activity, must start 
simultaneously, but can be preempted and restarted at different time-points. This is what we call 

synchronization constraint that corresponds to a short period needed for briefing all the persons contributing on 
this activity 

 Each resource, i.e., person, have one preferred skill. This is not really a hard constraint but project manger 

attempt to satisfy these preferences. 

We studied the case of reactive problem of  PMSPSP. From a practical standpoint, this case is particularly interesting 
because the data available at the completion of the first schedule are forced to change. Several sources of interference 
exist, namely the underestimation of duaration  by the project manager often leads to a reevaluation of the duration a 
resource increase to a task. Other duties may also be introduced into a project running. The absence of people can also 
happen in an unpredictable manner, etc. Conversely, as the hazards of over-estimation of the load, deleting a task, the 
presence of a resource that was not foreseen at the start of the project, etc., may also occur. We refer to (Billaut, Moukrim, 
& Sanlaville, 2010) for a complete description of possible hazards. Faced with this multiplicity of sources of uncertainty 
and in the absence of statistical data on the arrival of each type of uncertainty, it will not be possible to develop robust 
methods capable to absorbing these aleas. 

So our approach,  is  to develop a purely reactive method without relying on pro-active  based solutions. 

The model proposed here has the advantage of being generic to cope with several types of disruptions. The main idea is 
to add a second criterion to minimize schedule disruption occurred during project excution. In the first section, we formally 
define the model, and then we describe the instances used in experimental results. In the third part, a linear model is 
proposed. This linear model is used in the  epsilon-constraint  method  proposed in  Section 5 to compute the Pareto 
optimal fronts. Then we propose an evolutionary  algorithm of type NSGA-II to solve this problem. Before conculusion, we 
present  experimental results conducted on the generated instances.  

1. PROBLEM  DESCRIPTION 

We consider a multi-skill project scheduling problem as in Figure 1. We suppose that the project is in progress at the time 

point  . At this time point, we decide to re-schedule this project due to some perturbations (new tasks arrived, etc) that 

arrive after the project has been started. So we have n tasks to be scheduled. Among them, a sub-set is already in 
progress. For this sub-set, we distinguish 2 types: in progress preemptive tasks IPP and in progress non preemptive tasks 
IPNP. Other tasks are either have been planned but not yet started or new tasks that have just to be identified at the 

instant  . 

Figure 1: Exemple 
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Figure 2: Feasible solution 

 

 

In addition to constraints of the predictive problem for which we looked for a schedule minimizing the project total duration 
Cmax, we add the following constraints :  

 every non-preemptive task which is in progress at  has to continue its execution until the end without interruption 

and without resource assignment change. Durations may change and in this case that modification will be applied 

from the instant   

  For each skill of in progress preemptive task, the resource assignment does not change, but the time execution 
windows may change in the new schedule. 

The goal is to find a new planning which respect all constraints (original and new constraints) in such a way that the new 
Cmaxis minimum and the maximum number of resource re-assignment is also minimal. 

The change of resource assignment criterion is important from an organizational point of view. 

because in projects such as IT projects, a person assigned to a task can be linked with a customer or another party from 
outside, so changing that person too frequently is not preferable and can contribute to deterioration of service quality. 
Another argument justifies this criterion: if a person is assigned to a task, it often happens that the person is prepared to 
be effective once the job is started. For example, if performing a given tasks needs to do some reflexion or thinking to find 
some ideas that are not trivial, the person sometimes develop ideas during his free time before starting this task. So 
changing it can affect the effectiveness of this task realization  

We ignore here the prospective task sequencing modification which can arise for some resources. This seems to be less 
important, because even the proposed planning does not change the tasks order of execution, persons can do that by 
them selves when it is possible. 

Hence, this model is a particular case of the predictive model studied in (Dhib, C., Soukhal, A., & Néron, E, 
2011). The integration of a second criterion leads to a more complicated problem. Therefore, proposed methods for 

solving the predictive problem cannot be anymore used with this new problem. 

2. LITERATURE REVIEW 

In this section, we want to highlight the most important research axes studied by project scheduling researchers when the 
project information or data are considered uncertain. When it is a case, scheduling approaches anticipating the data 
change are considered (proactive scheduling). When a re-scheduling is necessary to modify in progress planning , due to 
arrived distributions , hence, we speak about reactive methods. 

It is to note that, in reality, an established schedule at the start of project still very rarely without change until the end of 
project. In scheduling literature, we distinguish three types of schedules  (Billaut, Moukrim, & Sanlaville, 2010): 

1. Predictive schedule: in this case, an initial schedule based on provided deterministic data is established without 

anticipating eventual changes. Many resolutions methods was studied in the literature (Demeulemeester, E., 
& Herroelen, W, 1997).   

2. pro-activeschedule: it is a predictive schedule, which is realized with taking into consideration that initial data may 
change (perturbed) during project execution. For example, a task duration may be prolonged, a resource may 
become unavailable. 

In (Van de Vonder, Demeulemeester, & Herroelen, 2007), authors developed heuristic methods to find a stable 
solutions of the RCPSP problem, i;e, computed schedules are able to absorb arrived changes without perturbing 
the actual schedule. In this study, one type of perturbations is considered. It is, the change of tasks duration. For 
each task, authors define a weight which reflect the degree of importance or not of a change on a task start date 
in the computed schedule with respect to its start date in the actual schedule. The authors were, so, interested by 
minimizing the wighted sum of deviations of start dates of tasks. 
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First of all, they compute an optimal solution by using an exact algorithm such that these proposed in  
(Demeulemeester & Herroelen, A branch-and-bound procedure for the multiple resource-constrained project 
scheduling problem, 1992),  (Demeulemeester & Herroelen, 1997). Then, they fix a deadline date for project 

completion time (Cmax), which is equal to       
   

  with  = 1.3. Then, they create buffers after critical tasks. 

These buffers have to extend  a critical task, without need to right shift its successors. 

In (Drezet, 2005), authors have studied a real problem, in which the objective is to minimize the maximum 
lateness Lmax. They point out  that, from an industrial point of view, good quality solutions are not interesting 
except if they are not called into question, from the moment that a person planned work for a given task take 
more time than it was firstly planned. The authors are interested to a proactive approach, where the objective is 
to find robust solutions, with respect to some robustness indicators based on both person unavailability and task 
processing time extension probabilities. Priority rule based heuristics was studied.  

In (Chtourou & Haouari, 2008), authors propose a proactive method for the classical RCPSP problem, with 

uncertain tasks processing time. The idea is to add another criterion to be optimized. This criterion is a measure 
of solutions robustness. Many measures based on slack was tested. The proposed approach can be summarized 
in two phases: In the first phase, a priority rules based heuristic algorithm is executed many times to optimize the 
Cmax and  the minimal found value is used in the second phase. In the second phase, we do the same thing but 
by considering the second criterion and keeping the Cmax value equals or less than its value in the first phase. 
This study shows that introducing these measures for finding robust solutions is beneficial, and even, shows that 
some robust solutions may have best Cmax than other solutions which are less robust. 

There exists, other methods which are not dealing with perturbations anticipation. In contrast, they propose to 
manage better these perturbations when they arrive. For example, in  (Artigues & Roubellat, 2000), authors 
propose a polynomial algorithm which insert a task into an instance of RCPSP which is in progress. 

3. reactive scheduling: called also on-line or dynamical scheduling, it is to recompute the schedule after some 
perturbations arrive on the initial date based on which the actual schedule was calculated. Many approaches 
were studied in the literature. We distinguish manly: 

a.  rebuilding a new schedule: this strategy consist of executing the same method used for finding the base 
schedule, for the remaining of project, without taking into account the actual planning; 

b.  actual solution repair: in this strategy, we try to repair the existing solution by inserting the arrived 
perturbations; 

c.  building a new solution based on the actual one, by adding one or more criteria to optimize, for ensuring 
the stability with respect to the actual planning. 

In the best of our knowledge, the literature on reactive scheduling, for project management and scheduling with multi-
skilled workforce is almost empty. We find only the work of  (Drezet, 2005), where authors propose a reactive method 
which is limited to a very small horizon. In fact, they consider only perturbations, which have an impact on only one day 
(divided to 6 periods). The objective is to minimize the number of violated constraints, then minimizing the maximum 
number of of assignment change per person. A Tabou search method optimizing lexicographically,  the two criteria is 
proposed  in this work. 

3. Instances generation 

Reactive instances are generated from predictive ones by introducing some perturbations on this instances. 

We apply these perturbations from a given instant  . So, we developed an instance generator, which, from a given 

instance of the initial problem, generate a reactive problem instance by solving the predictive problem using a heuristic 

algorithm (Dhib, C., Soukhal, A., & Néron, E, 2011) Considered perturbations are : modification on tasks skill 

processing time, persons availability. We used data sets of 10, 16 and 20 tasks. 

The following procedure describes the process of reactive instances generation: 

 Actual planning: computed using the heuristic (Dhib, C., Soukhal, A., & Néron, E, 2011) with the EDD 

priority rule, we denote the project total duration by C
0

max 

 Re-scheduling dates :        
    

 

 
       

    
 

 
        

      

 Considered perturbations : Skill/task duration increase, availability or unavailability of a person. 

 for all tasks, with completion date between      and   
    

 

 
 , they have a probability of 20% to increase their 

processing time of                     
  

 for each person  mand a period         
    

 

 
    , if person was available, he/she has a probability of 10%to 

become unavailable. Else, he/she has a probability of 5% to become unavailable. 
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 A solution feasibility verification is done, for non preemptive tasks which are in progress on the time interval 
        . This verification may redo some generated perturbations during the previous steps. 

4. Mixed Integer Program (MIP) 

In this section , we propose mixed integer variables linear program to solve this problem of re-scheduling from an instant 

 . The proposed MIP is based on the model proposed for the predictive model (Dhib, C., Soukhal, A., & Néron, E, 
2011). Because of the huge number of variables and constraints generated by this model, it cannot be used to solve a 

big size instances within a reasonable execution time. Despite of that, we used this model in an exact method based on an 
             approach which is described in next sections  in order to compute a Pareto front for some instances with 

small sizes. 

Additional data : in addition to initial instance data, we define here a reactive instance related data: 

       =1  if person Pm was assigned to a skill Skof task Ai in the initial planning ; 0 else 

      = 1 : if the skill Sk of the task Ai is in progress , 0 else 

    : start date of task    in the actual planning 

   : rescheduling start date 

            if the skill    of task    was executed by person    during [t, t+1]; 0 else 

Auxiliary Variables 

  
     

  if person    is assigned to skill   of the task   in the new planning; 0 else 

          if         
     

 ; o else. The boolean indicates if the assignment of the skillskill   of the task    to 

person   the new planning is different of the one in the base planning. 

              This variable count the number of assignment of skills of tasks to person   , which did not 

appear in the reference planning(planning initial). 

Constraints 

1. fixing the planning before   :  

                                  (1) 

2. do not interrupt non preemptive task which is in progress during [ ,    ] 

                                                           (2) 

                          (3) 

3.           if theperson  executes the skill   of the task    

       
          

    
                 (4) 

4. assignment change with respect of initial schedule (planning)  

                     (5) 

                      (6) 

                          (7) 

                      (8) 

5. Total person assignment change  

                               (9) 

Objectives :  we minimize at the same time, both project completion date Cmax (Equation 10) and the maximum number of 

assignment change (Equation 12). 

                       (10) 

                         (11) 
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5. Pareto optimal solutions 

From the linear model, a Pareto front is obtained using the Ɛ-constraint approach described by the algorithm 3.3. We 

firstly, solve the linear model considering only the second criterion en (     ). If a feasible solution is found with a 

completion project date    
 , we solve again the model with an additional constraint            

  -1. This procedure is 
repeated until the problem becomes unfeasible. This approach allowed to enumerate the Pareto optimal solutions for 
small size instances. We used these result, namely for measuring the performance of an NSGA-II algorithm proposed in 
3.4.1. Experimental results of this method are presented in Section 6. 

 

Algorithm 1 : Espsilon-constraint method 

Heuristic methods 

The just presented exact method do not allow to solve instances of real size. Consequently, we propose a bi-objective 
genetic algorithm of type NSGA-IIin order to compute an approximation of the Pareto front. 

NSGA-II Algorithm 

An implementation of the NSGA-IIalgorithm  (Deb, Agrawal, Pratap, & Meyariva, 2000) is proposed to compute an 
approached Pareto front . NSGA-II algorithm is widely used  for solving multi-criteria optimization problems. recently,  
(Ballestın & Blanco, 2011)  realized a study on the multi-objective RCPSP, in which they compared the performance of 
NSGA-II with respect to other multi-objective meta-heuristics SPEA2 and  PSA. Their study gives a large advantage to 
NSGA-II compared to PSA and  slightly more advantageous than SPEA2 method. As a population based evolutionary 
algorithm, NSGA-II algorithm starts from a set of solutions (initial population) and iteratively, enhance them until some stop 
condition is reached (number of iterations or execution time limit, etc.). The NSGA-II algorithm principle can be defined as 
follows suit :  

1. generate an initial population    with N individual, 

2.  reproduce a population    of size N from   using reproduction operators(crossover and mutation), 

3.  merge the two populations into one           

4. select N individual of   using a selection strategy and put them into   , 

5. repeat steps (2-4) until the stop condition becomes true. 

To produce a novel generation, NSGA-II method uses an elitist strategy. It regroups the 2*N individuals which results from 
the genetic operations into fronts     ,   such that any solution in a front   does not dominate the other. Furthermore, 

solutions in front     are dominated by these of front   . 

Individuals to be selected are taken from fronts     ,  . The index k corresponds to k
ith

 front such that the total number of 

individuals of fronts     ,     is less than N and the total number of individuals of fronts     ,  is greater than or equals 

to N. In such a way, All individuals belonging to     ,    are selected.  

To complete the population size to N, other solutions in front    have to be selected. NSGA-II method uses naturally a 

dispersion mechanism. This mechanism is applied during the selection from the last front   . The selection is done in the 

decreasing order with respect to the Crowding distance. This distance is large for a solution if the density of solutions 
around it are weak, and is small if this density is strong. 
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Algorithms for Pareto fronts computation 

 

Algorithm 2 : NSGA-II algorithm 

Initial population 

Initializing a genetic algorithm is an important phase and can have an impact on the quality of computed solutions during 
the other phases. If, for example, initial solutions are not not dispersed as enough, the algorithm may converge quickly 
and in a premature manner. 

To have a diverge initial population, we execute the greedy algorithm 2*N times with the 10 priority rules presented in  and 
with the random rule (2*N -10) times. Then, we use the same selection strategy as in the NSGA-IImethod, i.e, we use the 

selection by rank then based on the crowding distance applied on the      front, we complete the population to N 
individual. 

Solution representation and genetic operators : 

We use a representation with an integrated assignment (Dhib, C., Soukhal, A., & Néron, E, 2013). We represent 

so a solution by a priority rule list which respects precedence relationships coupled with a list of resources (persons ) 
associated to each task for its realization. The list of persons is sorted on the same order of skills which persons will do. 
We use the same crossover and mutation operators as described in Section 5. In progress preemptive tasks are not 
concerned by assignment change. Decoding a solution is done by using the heuristic algorithm, without assignment 

problem resolution (Dhib, C., Soukhal, A., & Néron, E, 2011). 

Parents selection for reproduction 

In genetic algorithms, two selection methods are necessary (may be similar) : The selection of a new generation to replace 
the actual one and the selection of parents to be used in the reproduction process. 

In our case, for new generation selection, we use the native NSGA-II method for selection as described above. Pour the 
choice of individuals that will participate to the generation to a new population, we use a selection by tournament as in 
mono-criteria genetic algorithms. The fitness function used here is the rank of the solution in the Pareto front in which it 
belongs. Solutions of first rank have so more chance to be selected. On the other hand, two solutions with the same rank, 
have the same chance of selection. 

6. Experimental results  

In the following sections, we present the numerical results of our NSGA-II method. Firstly, we compare its results with 
optimal solutions computed by the exact method presented in Algorithm 1. For dowing this comparison, we use the 



I S S N  2 2 7 7 - 3 0 6 1  
V o l u m e  1 5  N u m b e  1 1  

I n t e r n a t i o n a l  J o u r n a l  o f  C o m p u t e r s  &  T e c h n o l o g y  

7209 | P a g e   

S e p t e m b e r  2 0 1 6                                                      w w w . c i r w o r l d . c o m  

generational distance metric as described above. For instances where we do not have optimal solutions, we study the 
performance of the NSGA-II using hypervolume} metric. 

Used evaluation metrics 

In contrast of mono-criteria problems, the quality measure of a set of potentially Pareto optimal solutions is not a trivial 
task. There exists many performance measures for the multi-objectives methods (Zitzler, Thiele, Laumanns, Fonseca, & 

Grunert da Fon-seca, 2003)}. In (Van Veldhuizen, D., & Lamont, G., 2000)., authors classified these measures 

into three groups : 

1. according to Pareto optimal proximity ; 

2. according to solutions diversity; 

3. according to the two criteria at the same time. 

In our case, we use Generational Distance metric, which is a metric of the first category, to compare the NSGA-II results 
with Pareto optima found by the epsilon-constraint exact approach. 

In order to measure the NSGA-II performance for other instances where we don not know the optimal front of Pareto, we 
use the hypervolume metric, which measure at the same time both the diversity of solutions and the distance from the 

optimum. 

Generational Distance : this metric compute the distance between the approached front pf Pareto OP* and a 

reference front OP using the following formula : 

 

where p is the number of criteria to optimize. I the case of two criteria: 

 

This distance is computed by using normalized coordinates for both criteria. For each instance, the maximum value of 
each criterion taken from the two fronts: approached and optimal, is used. 

Hypervolume : This indicator measures the volume produced by points of the front to be evaluated with respect to a 

reference point, which is dominated by all points of the front (see Figure 3). Because we minimize the economical 
functions, the quality of approached fronts is considered good when this indicator is high. In fact, in such a case, the 
solutions are very far from the reference point. It is clear that the choice of this reference point is very important. To this 
point, we must compute an upper bound for each criterion. Concerning the project completion date Cmax, we consider the 
maximum planning horizon as an upper bound. For the second criterion, the maximum assignment change for a person is 
reached where he/she is assigned to all tasks where he/she was not assigned to in the initial schedule and for a skill 
different from the one he/she was assigned to for this task itself. 

The upper bound for the second criteria is son the maximum among these values. We note that also the two criteria have 
not always the same magnitude. So, we use always the normalized values by dividing on the values of upper bounds. 
Hence, the reference point has the coordinates (1,1). 

Figure 3: L'hypervolume engendré par un ensemble de points non dominés ( bi-objective case) 

 

NSGAII vs epsilon-constraint exact approach 

In this section, we measure the quality of solutions computed by the genetic algorithm by comparing them with the Pareto 
optima obtained by the based epsilon-constraint exact method. From the original instances for the predictive case, 
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experimentations has been conducted using 10 instances of 10 tasks. For each instance, 3 reactive instances were 

generated at periods  
      

    
 

 
       

    
 

 
 
 . NSGA-II parameters are:  

 population size = 20 individuals, 

 number of generations (iterations) : 250, 

 crossover rate : 0.8,  

 mutation rate : 0.05. 

Table 1: NSGAII vs epsilon-constraint 

event distance NSGA-II time EC time 

0 0.66 1.02 429.67 

3  0.39  1.02  19.9 

5  0.31  0.89   5.03 

 

NSGA-II performance using Hypervolume indicator 

In Table 2 , we present experimental results obtained by NSGA-II on instances of 16 tasks by using generated 

perturbations at time periods     
    

 

 
           

    
 

 
  This gives in total 120 instances (     ).  

NSGA-II parameters :  

  population size: 32 individuals 

 number of generations: 250 

  crossover rate : 0.8 

  mutation rate : 0.05 

Table 2: NSGAII on instances of 16 tasks 

event HV NSGA-II time 

0 0.59 1.73 

1 0.54  1.69   

2  0.54  1.40   

 

The results presented in Table 1, show a decrease of the distance between the approached front and the optimal one 
when the perturbations arrive late. For example, the distance was 0.6619 at the instant    , while this distance was only 

0.3136 for instances corresponding to perturbations at time instant of         
    

 

 
 . We note that the exact approach 

sometimes, finds best solutions than the initial schedule in terms of Cmax, especially when the reactive instance 
corresponds to perturbations arrived very early (near to instant 0), but with cost of some modifications on initial resources 
assignments. 

Another important remark, which can "call into question" the use of generational distance as a performance indicator, is 
the number of solutions. For example, in some cases NSGA-II algorithm find a Pareto front with only one point belonging 
to the optimal front, which gives as a result, a generational distance of zero, while the optimal front contains more than one 
point. 

In Table 1, the second column (HV) presents the average values given by the hypervolume indicator engendre by non-
dominated points computed by the NSGA-II algorithm. 

We can note that this value is highest for the instances corresponding to a    , which is not expected, if we refer to 

results in Table 1. This is partly due to that the upper bound of        is usually highest at the beginning of project 

because it depends to the number of tasks which are not yet completed. 
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CONCLUSION 

In this paper, we studied a reactive Multi-Skill Project Scheduling problem. We proposed a global approach, which does 
not depend to the nature of perturbations arise on  in progress planning. We propose to solve this problem by considering 
two criteria : the original criteria in the predictive planning which is the minimization of makespan and a second criteria 
which minimizes the maximum number of resource assignment change with respect to the base schedule. 

To solve this problem, we proposed an exact approach based on a linear program and an approached method based on 
genetic algorithm of type NSGA-II 

The first obtained results are satisfying. It will be important to realize more experimentations to analyze more accurately 
the performance of proposed methods. 
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