SW-SDF based privacy preserving data classification
DOI:
https://doi.org/10.24297/ijct.v4i3.4206Keywords:
DBB tree index Data Mining, SecurityAbstract
The core objective of privacy preserving data mining is to preserve the confidentiality of individual even after mining. The basic advantage of personalized privacy preservation is that the information loss is very less as compared with other privacy preservation algorithms. These algorithms how ever have not been designed for specific mining algorithms. SW-SDF personalized privacy preservation uses two flags SW and SDF. SW is used for assigning a weight for the sensitive attribute and SDF for sensitive disclosure which is accepted from individual. In this paper we have designed an algorithm which uses SW-SDF personal privacy preservation for data classification. This method ensures privacy and classification of data.