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ABSTRACT 

The core objective of privacy preserving data mining is to preserve the confidentiality of individual even after mining. The 
basic advantage of personalized privacy preservation is that the information loss is very less as compared with other 
privacy preservation algorithms. These algorithms how ever have not been designed for specific mining algorithms. SW-
SDF personalized privacy preservation uses two flags SW and SDF. SW is used for assigning a weight for the sensitive 
attribute and SDF for sensitive disclosure which is accepted from individual. In this paper we have designed an algorithm 
which uses SW-SDF personal privacy preservation for data classification. This method ensures privacy and classification 
of data. 

General Terms 
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Indexing terms 
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Academic Discipline And Sub-Disciplines 

 Education  

SUBJECT  CLASSIFICATION 

Computer science 

TYPE (METHOD/APPROACH) 
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1. INTRODUCTION  

Privacy preserving data mining (PPDM) is a novel approach in data mining which preserves the privacy of the individual or 
company related information even after mining process[1,8,9]. The data supplier is usually referred as data publisher and 
miner as data recipient. Usually both belong to different organization. The main goal of data publisher is to publish data in 
a way which ensures privacy. Different methods that have been proposed include data anonymization, data swapping and 
randomization of the record values. 

Data anonymization is an approach in which original values of the records are generalized in such a way that duplicate 
records are created. The major data anonymization techniques that were proposed in literature are k-anonymity, l-diversity 
and t-closeness. In k-anonymity[4] each record must have at least k-1 instances of it.  This suffers from homogeneity 
attack in which each block contains same sensitive values. l-diversity [5] requires that each record must have multiple 
instances such that it contains  l well  represented  sensitive values. The drawback of this approach is that it suffers from 
Similarity Attack. This happens when all the sensitive values in a quasi group are distinct but refer the same meaning. t-
closeness [6] requires each of the quasi group to have distribution of sensitive value equal to the distribution of published 
data.  

SW-SDF personal privacy preservation[2] uses sensitive weight to differentiate between sensitive attribute values. SW=0 
is assigned to sensitive value which does not require privacy and SW=1 for sensitive value which require privacy. A 
statistical based method or clustering method can be used for identification of sensitive value[3].  An additional flag SDF is 
used or disclosure of the record. For all records whose SW=0 , SDF=0 is initialized. For SW=1, SDF is accepted from 
user. SDF=0 indicates a record which is not sensitive and does not require privacy. SDF=1 indicates record which are 
sensitive and requires privacy. A DBB tree indexing technique is used for faster retrieval of records and QIDB creation.  
Each QIDB can be generalized to the same level.   

In this paper we address issues related to privacy preserving data classification. The goal of mining is to retrieve 
information from large amount of data which can be used for decision making [7]. Data classification is a data mining 
function that classifies data into discrete ones using tree structured hierarchy. This can be subsequently used for 
prediction and generating rules. Many real world applications require privacy preservation classification. For example 
consider patient information having the details pid, pname, page, pzipcode and pdisease. In this pid and pname are called 
identifiers and are removed by data publisher before giving it to data recipient. Page and pzipcode are called quasi 
identifiers since they have a reference in some external database like voters database. pdisease is sensitive attribute 
since the record owner is not ready to reveal his identity. The resultant   data base will contain page,pzipcode and 
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pdisease. This can be used by the data recipient for classification. The classification may include identification of 
dependent values of page and pzipcode for the pdisease like „heart disease‟. This classification must not reveal the 
identity of the individual and company related information. Our solution is to avoid disclosing of sensitive data beyond the 
source by generalization. The resultant published data can still be used for constructing the data classifier approximately 
equivalent to that of the original classifier using SW-SDF personal privacy. 

2. Related work in privacy preservation  

Privacy preservation was initially applied towards data recipient end. Models using modification or data swapping was 
done for ensuring privacy without considering how the data was used. This was the major disadvantage of most of the 
approaches initially [8, 9]. In literature most of the privacy preservation was initially implemented for randomization 
technique which was modified for the rest of the approaches. In [10] privacy preservation for association rule was defined 
for distributed environment. Each site holds attribute of each transaction and two-party  algorithm was used to identify the 
frequent itemset. A cryptographic approach was used in [11] to retrieve information where data was partitioned horizontally 
it adds little overhead to the mining task. Algebraic technique for identification of association rules was proposed in [12] 
which assumes multiple data providers and a single data miner. 

Clustering is an unsupervised technique for classifying data to a labeled representation. Many techniques were also 
proposed for privacy preservation data clustering[13,14]. In [13] method for k-means clustering was indicated. It assumes 
that different sites contain different attributes for a common set of entities. Each site learns the cluster of each entity, but 
learns nothing about the attributes at other sites. Arbitrary partitioned data which is a generalization of horizontal and 
vertical data was proposed in [14]. It also gave the representation of protocol for k-means clustering. Privacy preserving 
classification was defined for individual technique. In [15] author has defined an algorithm for ID3 over horizontally 
portioned data involving two parties. Secure privacy preserving algorithm for support vector machine (SVM) classification 
over vertically partitioned data was indicated in[16]. PCDS method [17] extends the process of data streams classification 
to achieve privacy preservation. It uses perturbation to ensure privacy. Protocols to develop a Naïve Bayes classifier[18] 
on both vertically as well as horizontally partitioned data were indicated.  

3.  Data classification using ID3 

Author [20] introduced the concept of classification algorithm ID3 and is indicated in Algorithm 1. The input is records 
containing finite set of attributes. One of the attribute among this given set contains class attributes. The decision tree in 
ID3 is built using top-down approach. In the first iteration it finds the attribute which best classifies the data considering the 
target class attribute. Once the attribute is identified in the given set of attributes algorithm creates a branch for each 
value. This process is continued until all the attributes are considered. In order to calculate which attribute is the best to 
classify the data set information gain is used. Information gain is defined as the expected reduction in entropy. Entropy of 
a data set of tuples S is defined in equation 1. 

entropy s =  −pilog2pi
d
i=1                                                                 (1) 

Where d is the different classes that are there in each attribute. pi is the actual number attribute which belong to a 
particular class i. The information gain of an attribute A is then defined in equation 2. 

gain S, A = entropy S −  
  Sv  

 S v entropy Sv                                   (2) 

with Sv the subset of S with tuples having value v for attribute A. 

----------------------------------------------------------------------------------------------------------------------------------- 

Algorithm 1 The ID3 Algorithm 

Input: A set of attributes, C class attribute, S data set of tuples 

Output: Decision tree 

----------------------------------------------------------------------------------------------------------------------------------- 

If ( empty(S))   

Then       

Return false; 

else if ( check_class_value(S)) 

 then  // entire attribute class has the same value  

Return specific_class_value(). 

elseif ( empty(A)) 

then 

 // all the attributes have been classified 
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 Return most_frequent_value(S)  

else 

 // different classes exists 

 // find the information gain among the given set of A 

// find the attribute a which has the maximum information gain 

highest_information_gain(S,A) 

// based on the selected attribute a 

Let a has m values for S 

Partition S in m parts S(attr1), ..., S(attrm) such that attr1, ..., attrm are the different 

values of a. 

Return a tree with root a and m branches labeled atr1...attrm, such that 

branch i contains ID3(A − {a} ,C, S(attri)). 

end if 

----------------------------------------------------------------------------------------------------------------------------------- 

4. Existing system 

Most of the existing approach use randomization for privacy preserving. The block diagram of existing randomization 
approach is shown in figure 1. The overall execution can be divided into two phases first the data publisher end and 
second is the data recipient. In data publisher side the client systems provide data. Data is either horizontally partitioned   
or vertically partitioned. Randomization is applied to the contents in such a way that it ensures the privacy and there by 
classification. Data join is done on the resultant data that is provided by multiple locations after randomization. This data is 
passed to the data recipient.  The data recipient retrieves the data distribution and passes it to the data classifier. The 
main drawback is that it has been proven that randomization provides very less privacy [19]. Efficiency of classification 
using randomization decreases for the miner if the data is more. 

 

Fig: 1. Randomization approach 

 

5. Proposed system 

SW-SDF based privacy preserving data classification uses the basic concepts of SW-SDF[2]. The classification algorithm 
has been designed using the previous ID3 representation. The basic structure of the proposed system is shown in figure 
2. 
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Fig: 2. SW-SDF based privacy preserving data classification 

In the data recipient end data is accepted from multiple locations. The relation may be divided in to horizontal or vertical 
representation. The joined data is passed on to SW-SDF data converter which modifies the data in such a way that 
privacy and classification is retained.  

6. Notation for SW-SDF data converter 

Let us assume relation T is made of n records represented as T={t1,t2,t3,…,tn}. Quasi attribute is represented as t.q and 
sensitive attribute as t.s .For classification t.s is a categorical attribute and t.q is a non categorical attribute. it also contains 
two additional information t.sw representing sensitive weight and t.sdf for disclosure. let us assume that SW is calculated 
for the sensitive attribute and a value of SW=1 is assigned to an attribute which actually requires privacy. For these 
records SDF is accepted. SDF=1 indicate that the record owner is ready to disclose his identity. SDF=0 indicates the 
record owner which is not ready to disclose his identity. In our representation we use only SDF for data converter and is 
indicated as t.sdf. SW-SDF data converter is shown in Algorithm 2. 

--------------------------------------------------------------------------------------------------------------- 

Algorithm 2 SW-SDF_data_converter 

Input: set of records T, with q attributes 

Output: Decision tree 

---------------------------------------------------------------------------------------------------------------- 

If ( empty(T))   

Then       

Return false; 

else if ( check_class_value_withSDF(T)) 

then  // entire attribute class has the same value and none of the records is sensitive 

insert_dbb_tree(T)  // no change with the records 

 elseif (empty(q)) 

  //no attribute for classification 

  If ( Check_for_sensitive(T) ) then 

  Generalize_rec(T); 

  endif 

 else 

  //there is a combination of SDF=0 and SDF=1 

highest_information_gain(T,q) 

Let q has m values for T 

Partition T in m parts T(attr1), ..., T(attrm) such that attr1, ..., attrm are the different 

values of q. 

insert_dbb_tree with root q and m branches labeled atr1...attrm, such that 

branch i contains SW-SDF_data_converter(q − {a} ,T(attri)). 
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end if  

----------------------------------------------------------------------------------------------------------------------- 

Division base bit (DBB) tree indexing technique has been used for the construction of the node. Insert_dbb tree uses the 
data structure shown in figure 3. It contains the entire record Q, sdf value S and Flag F. it also has an index for its parent 
node and an index which points to multiple records. The resultant structure after insertion is shown in figure 4. 

 

Fig: 3. Data structure of DBB tree 

Bit representation is used for comparing one record with the other. The initial branching is represented by the information 
gain. For example let us assume a patient database shown in table 1. Zipcode and age are non categorical attribute. 
Disease is a categorical attribute. 

Table 1. Patient data base 

Label Zip 
code 

Age  Disease  SDF 

A 56212 20 Flu  1 

B 56212 60 Heart 0 

C 56212 20 Flu  1 

D 56212 80 Heart  1 

E 56212 80 Flu  1 

F 57213 20 Flu  1 

G 57213 60 Heart 0 

H 57213 80 Heart 1 

I 57213 20 Flu  1 

J 58211 20 Flu  1 

K 58211 30 Flu  1 

L 58211 80 Heart 0 

 

To start with T contain all the records. Information gain for each a quasi attribute is calculated, for the above example 
information gain(age)= 0.70 and information gain(zipcode)= 0.05. In this example age is considered as the root node for 
division. Age is compared for creation of the sub nodes of the tree. Record a and c both have the same age so a bit value 
of 00 is used as an index for record a to point to record c. For the next record f the same comparison is done once again 
the difference of bit is zero so it will check wither there is already an index of zero. In this example there is an index 
already present so the record c will point to f. the structure of insertion is shown in figure 4. The labeled representation of 
all the records after insertion using the structure is shown in figure 5. 

 

Fig: 4. Structure of a tree after insertion 
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Fig: 5. Label representation of DBB tree 

------------------------------------------------------- 

Algorithm 3 check_class_value_withSDF 

Input : T records 

Output: Boolean 

  n=size(T) 

  for i=1 to n 

   if t.sdf=0  then 

    return False; 

    Break ; 

   Endif 

  Endfor 

  Return True 

------------------------------------------------------- 

Dept first search is used for retrieving records after the identification of the node from where it must be searched. In 
check_class_value_withSDF algorithm we find whether all the nodes referenced by the node to be searched contains 
SDF=1.  Reorganization of the tree happens when there is a combination of SDF=0 and SDF=1 in a particular node where 
insertion is to be done.  The reorganization is based on the information gain obtained from the rest of the non categorical 
attributes. In this example node with 80 ie d, e, h and l gets reorganized to indicated the new nodes in the hierarchy. If it  is 
a leaf node Generalize_rec is invoked. This algorithm identifies the QIDB block for generalization. For example record b 
must not be disclosed. It searches for records in its parent node. The first criteria is wither the record has not been used 
which is checked by flag f and it must be non sensitive ie SDF=1. Generalize_rec also checks whether the frequency 
distribution of QIDB equal to the overall distribution. The QIDB block will have  b, f and g. Based on the bit representation 
it gets generalized. The resultant information will have privacy because data is generalized and the decision tree is also 
retained. 

7. Experimental results 

The efficiency of our algorithm was realized using the standard American data set of 400 records. The details of the data 
base included age, education, marital status and occupation. value generation hierarchy was created for each of the quasi 
attributes. A single sensitive attribute disease was used. SW was identified by using statistical approach. The resultant is 
shown in table 2. Frequency distribution of sensitive attribute is shown in table 3. 

 

Table 2. Resultant SW for sensitive attribute disease 

Disease SW 

Heart 1 

Flu 0 
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Table 3. Frequency distribution block 

Disease Distribution 

Heart 0.33 

Flu 0.67 

 

The initial representation of decision tree is shown in figure 6 and the resultant SW-SDF based privacy preserving data 
classification is shown in figure 7. 

 

Fig: 6. Decision tree before SW-SDF based privacy preserving data classification 

 

Fig:7. Decision tree after SW-SDF based privacy preserving data classification 

 

8. Conclusion and future work 

SW-SDF based privacy preserving data classification ensures the privacy of the individual by using two flags SW and 
SDF. SW is automatically calculated using statistical inference and according SDF is accepted form user. The 
classification algorithm indicated works efficiently for creating decision and information loss is also less. In this paper we 
have used a DBB tree indexing technique for faster retrieval and classification. Future work includes developing SW-SDF 
for other mining methods. In our example we have considered only one sensitive attribute, methods must be defined for 
multiple sensitive attributes. Developing new measures for SW-SDF personalized privacy preservation data mining 
methods can be investigated. Improvisation of the current method incorporating different releases can be done.  
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