Fast Iterative model for Sequential-Selection-Based Applications

Authors

  • Khosrow Amirizadeh Universiti Sains Malaysia (USM)
  • Rajeswari Mandava Universiti Sains Malaysia (USM), 11800 Penang

DOI:

https://doi.org/10.24297/ijct.v12i7.3092

Keywords:

Iterative MAB model, Fast action selection, Self-tuning of iterative algorithms, Step-size free adaptive algorithm.

Abstract

Accelerated multi-armed bandit (MAB) model in Reinforcement-Learning for on-line sequential selection problems is presented. This iterative model utilizes an automatic step size calculation that improves the performance of MAB algorithm under different conditions such as, variable variance of reward and larger set of usable actions. As result of these modifications, number of optimal selections will be maximized and stability of the algorithm under mentioned conditions may be amplified. This adaptive model with automatic step size computation may attractive for on-line applications in which,  variance of observations vary with time and re-tuning their step size are unavoidable where, this re-tuning is not a simple task. The proposed model governed by upper confidence bound (UCB) approach in iterative form with automatic step size computation. It called adaptive UCB (AUCB) that may use in industrial robotics, autonomous control and intelligent selection or prediction tasks in the economical engineering applications under lack of information.

Downloads

Download data is not yet available.

Downloads

Published

2014-02-14

How to Cite

Amirizadeh, K., & Mandava, R. (2014). Fast Iterative model for Sequential-Selection-Based Applications. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 12(7), 3689–3696. https://doi.org/10.24297/ijct.v12i7.3092

Issue

Section

Research Articles