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ABSTRACT 

Accelerated multi-armed bandit (MAB) model in Reinforcement-Learning for on-line sequential selection problems is 
presented. This iterative model utilizes an automatic step size calculation that improves the performance of MAB algorithm 
under different conditions such as, variable variance of reward and larger set of usable actions. As result of these 
modifications, number of optimal selections will be maximized and stability of the algorithm under mentioned conditions 
may be amplified. This adaptive model with automatic step size computation may attractive for on-line applications in 
which,  variance of observations vary with time and re-tuning their step size are unavoidable where, this re-tuning is not a 
simple task. The proposed model governed by upper confidence bound (UCB) approach in iterative form with automatic 
step size computation. It called adaptive UCB (AUCB) that may use in industrial robotics, autonomous control and 
intelligent selection or prediction tasks in the economical engineering applications under lack of information. 
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INTRODUCTION  

A growing number of models in autonomous and adaptive control applications operating based on intelligent learning 
approaches to make “sequential decisions” tasks. These prove a truly fundamental enhance from traditional control 
process to intelligent approaches. In most cases, these approaches should be able to perform sequential decision making 
with long control horizons that the exploration and exploitation trade-off is inherently considered. Recently, subjects such 
as “iterative learning control and reinforcement learning” in adaptive control and robotics, autonomous agents and 
intelligent decision making have widely developed. In this regard, multi-armed bandit (MAB) structure plays an important 
role in real world applications. With a simple search on the web, we may face with subjects such as, bandit algorithms for 
limited feedback learning, contextual bandits and optimal decision making, Bayesian reinforcement learning and optimal 
control for uncertain models. Ease to implementation is the main reason for this expansion however; the decision maker 
should never become unsafe in uncertain situations for this simplicity. For these reasons, necessity to move from 
traditional approaches in “sequential selections” problems to new approaches with rely more on-line, adaptive and 
autonomous is unavoidable [17, 19]. 

Because of popularity of multi-armed bandit (MAB) model in sequential decision making, some variant of this model have 
been used in different applications. Distributed networks operations [11, 15], industrial decision making [16], software 
engineering [13], games industries [14] and robotics [10, 18, 19, 20] are some samples of recent real-world applications of 
MAB. In these applications, the main objective is to compute accurate estimation of the “actual value” of each interest 
options that often  referred  as “usable plans", "solutions”, “operational actions”, "useable resources", etc and then, take 
the most valuable of them, at each step.  

Multi-armed bandit (MAB) presents a general structure to perform sequential selections under insufficient information 
condition. At each step, the decision maker takes an option and receives a value as “reward”. This reward is taken from a 
distribution according to each action. The structure is similar to one state Markov decision process. This sequence should 
be repeated until agent/decision maker reaches the acceptable level of intelligence to make optimum decisions in the 
future. Since, at the beginning of the process, the agent is not enough intelligent, some selections should be taken 
randomly. Thus, the decision maker strikes to establish a good balance between two major tasks ” exploitation” and 
“exploration” to gain up the long term benefits.  

There are several approaches to formulate MAB model but a general model that establishes optimal balance between the 
exploration and the exploitation tasks, in general, is scarce [3, 5]. The simplest and most popular model is known by ε -
greedy family model. According to this approach, the agent takes, mostly, an action with higher “current value estimation” 
with probability 1- ε, greedy, and sometimes explores them with probability ε, randomly. The selection criterion in this 
category is the “action with higher value”.  For maximizing the long-term benefit, one can optimally define the exploration 
rate ε. It may be fixed or computed dynamically according to the agent evolution; however, this computation is not a 
straightforward task and indicates a limitation in this category.  

A wide range of theoretical MAB studies in statistics and decision making domains are presented based on defining an 
upper confidence bound (UCB). These models consider an extra term (i.e. a function of variance and exploration rate 
parameter) plus current value estimation to make the selection criterion. At each step, the agent selects the most valuable 
action with respect to this criterion. For example, authors in [6, 7] presented some models that have known as the main 
structures of UCB approach. However, UCB models are depended on the reward variance and consequently, they 
degrade with non-stationary observations. This is another limitation in MAB algorithms highlighted in UCB family 
approaches [4, 5].   

Another approach has been presented in [3]. Authors introduced an online mirror descent (OMD) algorithm which operates 
based on Gradient descent technique. The goal is minimizing the total loss incurred. OMD uses a step size that plays a 
critical role in this iterative model. Similar to other Gradient-based approaches, OMD needs to step-size-tuning in each 
condition.  

These mentioned limitations are usually noted in empirical evaluation under different settings. In this regard, some 
empirical comparisons have been conducted by Kuleshov and Precup [5]. The authors concluded models with good 
theoretical guarantees, sometimes, do not operate well in real-world applications. Furthermore, the presented models are 
usually addressed MAB problem with small set of actions under low variances. 

This study aims to evaluate UCB approach of MAB model under different conditions and present an “iterative MAB 
algorithm” based on UCB approach to minimize the mentioned limitations. In this iterative model an automatic computation 
of step size is applied to eliminate the "parameter dependency" problem and increase “number of optimal selection” which 
is useful for on-line sequential decision making tasks.  

The paper is organized as follows: a brief description of MAB problem and its mathematical model are presented in the 
next section. The proposed adaptive MAB model, AUCB, is expressed in section 3. Implementations and comparisons in 

section 4 exhibit the performance of new algorithm and finally, the paper ends with conclusion section. 

Multi-armed bandit problem (MAB) and the solutions 

Background and the basic mathematical model  

MAB is a framework to study a learning task where an agent is expected to make successive selections without any 
knowledge about the reward of the selection made. In the general case, it contains a set of different options and a set of 
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rewards relating to each selection. The decision maker faces a row of these options, without any extra knowledge to 
indicate the prominent one, and decides which one must be selected such that, the total reward is maximized. Maximizing 
this cumulative reward is equivalent to minimizing the regret, the difference between true cumulative reward and sum of so 

far rewards relating to the best selection at each round. These may be formulated as: let 𝐴 = {𝑎1,𝑎2 . . .𝑎𝑁} be a set of 

𝑁 usable action/option which have a set of probability distributions with expected values of {𝜇∗
𝑎1

,𝜇∗
𝑎2

. . . 𝜇∗
𝑎𝑁

} and 

variances {𝜎𝑎1
,𝜎𝑎2

…𝜎𝑎𝑁
}. The observations follow an independent and identical distribution (i.i.d). In non-stationary 

situation, the mean may vary with time. After choosing 𝑘𝑎  times an action 𝑎, instant estimation of “actual value”, 𝑉∗(𝑎) at 

step 𝑘 is obtained through the sample-mean equation: 

  𝑉𝑘 𝑎 =
1

𝑘𝑎
 𝑟𝑖 𝑎 
𝑘𝑎
𝑖=1                                                                                                                                               (1)     

Where, 𝑟𝑖(𝑎) is the instant reward at each step 𝑖. Finding the best estimation of 𝑉∗(𝑎)  is the main objective. Here, some 

samples of different categories are selected and empirically evaluated under different settings such as: increasing number 
of options and operating under different variances of observations. The comparisons are based on the percentage of 
optimal selections, the stability under different variances and the performance algorithms with larger set of options. The 
UCB approaches such as, UCB-1, UCB-V and UCB-Tuned are selected to be compared and evaluated with the proposed 
model AUCB. 

 UCB family approaches 

Authors in [5, 6, 7, 9] have considered models that operate with an upper confidence bound (UCB) criterion to select the 
prominent option at each step, to minimize long-term regret value. These models have been derived by an objective 
functions that consider the total cumulative regret error which is formulated as: 

 𝐶𝑢𝑚𝑅𝑒𝑔(𝑉) =  𝑉𝑖
∗𝑘

𝑖=1 −  𝑉𝑖(𝑎
∗)𝑘

𝑖=1 ,                                                                                                                       (2) 

 

Where 𝑉𝑖
∗ = 𝑚𝑎𝑥𝑎𝑉(𝑎) and 𝑉𝑖(𝑎

∗) is the current value of winner action   𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎  𝑉(𝑎)  at step 𝑖. In this 

case, the goal is to minimize the expected regret 𝐶𝑢𝑚𝑅𝑒𝑔(𝑉). UCB-1 uses a straightforward routine to take the winner 

action at every step. It considers the number of times that an arm has been selected after 𝑘 rounds, namely  𝑘𝑎 as well as 

the expected mean thus, the arm that maximizes the following criterion is selected. 

𝑎𝑘
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑉𝑘(𝑎) +   

2𝑙𝑛  𝑘

𝑘𝑎   
   )                                                                                                                               (3) 

Authors in [7] presented another criterion that considers empirical variance as well as a function of an exploration 
probability rate at each step. The simplified criterion is: 

𝑎𝑘
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑉𝑘 𝑎 +  

2 𝜎𝑘
2 𝑎 ℇ 𝑘 

 𝑘𝑎
+ 𝐶1  

3𝑏ℇ 𝑘 

 𝑘𝑎
 )                                                                                               (4) 

Where ℇ 𝑘 = 𝐶2 log𝑘 is the exploration rate function for each action at each step and 𝐶1,𝐶2 ≥ 0, while the variance 

of observations must be in the domain [0 b]. This is called UCB-V. The variance is computed experimentally 

through 𝜎𝑘
2 𝑎 =

1

𝑘
 (𝑟𝑖 − 𝑉𝑖(𝑎))2𝑘
𝑖 . Another approach, UCB-Tuned [5, 6], uses empirical variance with respect to a 

boundary 0.25 at each step. The criterion is: 

𝑎𝑘
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑉𝑘(𝑎) +   

𝑙𝑛  𝑘

𝑘𝑎
 min(0.25 ,𝑊𝑘(𝑎))                                                                                               (5) 

H tshankar@vit.ac.inre,  𝑊𝑘 𝑎 = 𝜎𝑘
2 𝑎 +   

2𝑙𝑛  𝑘

𝑘𝑎   
  is computed based on the current estimation of the variance [7].  

These mentioned criteria select the optimum action/arm and make the relevant models UCB-1, UCB-V and UCB-Tuned. 
After each selection, the agent receives a reward and updates its value based on a uniform iterative structure that stated 
in next section.  

The focus of this study is presenting iterative models with higher stability for on-line applications that operate under 
variable observations. Next section presents the new models and theirs specifications. 

Proposed adaptive model AUCB     

The following stochastic value function estimation is introduced to estimate “actual value” of an action 𝑎 at time step 𝑘. 

  

𝑉𝑘+1 = 𝑉𝑘 + 𝜂𝑘   𝑟𝑘+1 − 𝑉𝑘                                                                                                                                                 (6) 
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Here, 𝑉𝑘+1 is the “estimated value” associated to a selected action 𝑎. After each selection, the agent receives 

reward 𝑟𝑘+1 and updates its “value” based on this equation. The term in the bracket is the temporal difference error. 

Sequence {𝜂𝑘  } is a series of positive scalar gains or the step sizes taken from domain 0 < 𝜂𝑘  ≤ 1 . It plays important role 
in this iterative equation. Convergence of the Eq. (6) is guaranteed while the step sizes follow assumptions  𝜂𝑘

∞
𝑘=0 = ∞ 

and   𝜂𝑘
𝑟>1∞

𝑘=0 < ∞ [8]. With both stationary and non-stationary observations, step sizes should be precisely defined to 

compute the optimal performance. Authors in [2] showed that for non-stationary observations, the step sizes may be 

defined by a monotonically decreasing value at each time step. A general form that may be used is 𝜂𝑘 =
𝑛1

𝑘𝑛2  , 

where  0 < (𝑛1 ,𝑛2) ≤ 1. 

An iterative model with automatic step size computations technique may assist MAB algorithm to maintain its 
performance under variable variances or non-stationary observations. Assume that minimization the mean square error 

function 𝐽 𝑉𝑘 =
1

2
𝐸[  𝑉∗ − 𝑉𝑘 

2] is the objective, where  𝑉∗ is the “actual value” and 𝑉𝑘  is the “estimated value” of an 

option 𝑎 at step 𝑘. The Gradient descent approach introduces the path to the optimum point through the equation 𝑉𝑘+1 =
𝑉𝑘 + 𝜂𝑘∇Jk(𝑉) where ∇Jk 𝑉 = (𝑟𝑘+1 − 𝑉𝑘). In TD learning, decision maker does not know the “actual value”; 𝑉∗ instead, the 

approach operates with a temporal estimation,  𝑅𝑘  that is, the expected mean of rewards at current step. It means that, 

limk→∞ E 𝑟𝑘  = limk→∞
 𝑅𝑘

 =  𝑉∗ and it is clear that, the estimation of value function, iteratively, is computed in 𝑉𝑘 . In the 
steepest decent approach we may optimize the objective function with respect to the step size as:  

 
𝜕𝐽 (𝑉𝑘+1)

𝜕𝜂𝑘
=

𝜕𝐽

𝜕𝜂𝑘
(𝐸  (𝑉∗ −  𝑉𝑘 +  𝜂𝑘 𝑟𝑘+1 − 𝑉𝑘 )2  = 0                                                                                                      (7) 

 

𝜕𝐽 (𝑉𝑘+1)

𝜕𝜂𝑘
=  𝐸[   𝑉∗ − 𝑉𝑘 −  𝜂𝑘 𝑟𝑘+1 − 𝑉𝑘     𝑟𝑘+1 − 𝑉𝑘 ] = 0                                                                                            (8)                                                                                              

 𝐸  𝑉∗ − 𝑉𝑘  𝑟𝑘+1 − 𝑉𝑘  −  𝜂𝑘 𝑟𝑘+1 − 𝑉𝑘  𝑟𝑘+1 − 𝑉𝑘 =  0  

 𝑅𝑘 − 𝑉𝑘  𝑟𝑘+1 − 𝑉𝑘 =  𝜂𝑘 𝑟𝑘+1 − 𝑉𝑘  𝑟𝑘+1 − 𝑉𝑘   

Finally, after reordering the elements, the step size at each step is computed by:  

𝜂𝑘 =
𝑅𝑘𝑟𝑘+1−𝑅𝑘𝑉𝑘−𝑟𝑘+1𝑉𝑘+𝑉𝑘𝑉𝑘

𝑟𝑘+1𝑟𝑘+1−2𝑟𝑘+1𝑉𝑘+𝑉𝑘𝑉𝑘
                                                                                                                                            (9) 

Automatic step size will be computed through a function of current reward, the value function and expected reward. 
The simplicity of the model for implementation and operating without any “parameter dependency” are two important 
advantages. In order to compute Eq. (9), the current  𝑅𝑘  is iteratively estimated using the following stochastic equation: 

𝑅𝑘 = 𝑅𝑘−1 +  
𝑘𝑎

𝑘𝑎+1
 . (𝑟𝑘+1 − 𝑅𝑘−1)                                                                                                                                (10) 

The parameter 𝑘𝑎  is the number of action  𝑎 has been selected. The sequence {𝑘𝑎/(𝑘𝑎 + 1)} causes the error (𝑟𝑘+1 −
𝑅𝑘−1) damp to zero. This sequence in stationary situation may be changed to {1/𝑘𝑎} for best step size in stationary 
conditions. Based on computations in Eq.(9) and Eq.(10), at each step, optimal step size in iterative MAB model is 
computed. In addition, new MAB model is introduced by applying Eq. (9) and Eq. (10) in Eq. (6). Algorithm 1 shows 
pseudo code AUCB model. 

Algorithm 1: Adaptive UCB model  (AUCB). 

1) For    𝑘 = 1 to Plays 

2)     Select  𝑎𝑘
∗  ;                   //  UCB-V approach Eq. (4) 

3)     Receive reward  𝑟𝑘+1 𝑎𝑘
∗    ; 

4)     Compute   𝑅𝑘 𝑎𝑘
∗    ;     //   Eq. (10) 

5)     Compute    𝜂𝑘 𝑎𝑘
∗    ;    //   Eq. (9) 

6)     Update   𝑉𝑘 𝑎𝑘
∗    ;        //   Eq. (6) 

7) End  

The proposed model AUCB, based on adaptive step size calculation in iterative MAB algorithm is presented. This is the 
major advantage of the new method and it may be useful for on-line applications. Experimental results will be presented in 
the next section, indicating the performance of proposed iterative model. The approach is not limited to reinforcement 
learning; it may be applied in adaptive models in control engineering, signal processing and pattern recognition to maintain 
their performance under non-stationary or variable stationary observations.  

Experimental results and discussion 

In order to evaluate the proposed model AUCB, some comparisons based on behavior of all mentioned models with 
different reward variances are considered. Each model run for 1000 plays and this task is repeated for 1000 times to get 
an appropriate average over these independent runs. The number of actions is N=5 that increases to N=10, 20, 40 and 
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60. All random rewards are taken from a normal distribution with mean  𝜇∗~𝑁 0, 1   and the standard deviation  𝜎𝑟𝑒𝑤 ∈
{ 0.01, 0.1, 1, 3}. Thus, the reward function is 𝑟𝑒𝑤(𝑎) = 𝜇∗ +  𝜎𝑟𝑒𝑤 ∗ 𝑅𝑎𝑛𝑑. The 𝑅𝑎𝑛𝑑 function gives a random number from a 
normal distribution with mean zero and standard deviation one. Procedures use the general step size function as  𝜂𝑘 =
1/𝑘𝑛 . Appropriate settings are separately defined as, UCB-1 (𝑛=0.5), UCB-Tuned (𝑛=0.6), UCB-V (𝑛=0.4).  

After each selection, the “optimal action” and the “selected action” are compared, and the number of correct selections is 
considered to plot the percentage of optimal selections. Fig.1 shows this quantity while low variances of observations are 
used. Usually, UCB family models have better performance than e-greedy algorithms in stationary variance conditions due 
to using complex criteria which are stated in the section “Background”.     

 

Figure 1: percentage of optimal selections with variance 0.01(left) and 0.1(right). UCB models operate well 

under lower variances as indicated. UCB-V and AUCB perform better and have higher curves (two above 
overlapped curves). All models are run with iterative structure stated in Eq.(6) to estimate value of each 
option, iteratively, which is useful for on-line adaptive sequential selection tasks. AUCB operates similar to the 
best MAB algorithm without any parameter setting. 

Most bandit algorithms are depending on the variance of the reward [5]. It is important to know that which one is less 
sensitive. To gain an insight into this, we increase the variance to 1 and 3. The curves relating to percentage of optimal 
selections with high variances are plotted in Fig.2. In lower variances cases, Fig.1, UCB-V and AUCB select optimal 
objects more than 95%, quickly, while, in higher variances cases, as plotted in Fig. 2, only AUCB indicates the best 
performance, it means that the new structures may be useful to compensate the weakness under variable observations 
and is useful both in low and high variance conditions without any extra tuning.  

 

Figure 2: percentage of optimal selections under high reward variances 1(left) and 3(right) in stationary 

observation cases. AUCB is more tolerable under low and high variances. Among UCB models, UCB-1 has 
better performance in high variances, however, the new model, AUCB performed well in both cases. 

The performance bandit algorithms degrade with larger set of actions [4, 5]. Figure 3 illustrates the performance all models 
with a larger set of options.  
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Figure 3: percentage of optimal selections with N=10 (left) and with N=20(right). Models, often, degrade with 

increasing the number of actions. Comparing these plots with Fig.2, it is noticed that, UCB models select about 
90% percent optimal actions, while here, in the similar observations, all models lose the performance. AUCB is 
more stable with this condition.  

 

Figure 4: percentage of optimal selections with larger set of options. Left graph is resulted by N=40 and right is 

performed by N=60, both in stationary observation cases. Most UCB models degrade while UCB-Tuned failed. 
Still AUCB is more stable than other UCB models without any step-size tuning.  

Conclusion 

In this article, the iterative MAB model with automatic step size computation is presented. It called AUCB. The iterative 
structure with automatic computation of step size may present a more stable structure under different observations and 
conditions. Experimental results indicated these modifications may improve the performance MAB algorithms under 
different variances of observations and larger set of options. This iterative structure is important for on-line sequential 
decision making tasks where, automatic tuning of step sizes is the main concern. Some comparisons with different 
settings have been conducted to show the performance AUCB under variable observations, whereas similar models 
degrade under these conditions. It means the iterative model with automatic computation of step size may amplify the 
stability of the algorithms under these conditions. Variable variances and using larger set of actions are the set of 
concerns that may lose the efficiency of MAB algorithms. These results indicate that UCB approaches are depending on 
low stationary variances. AUCB may compensate this weakness, while it does not require any parameter tuning. In total, 
percentage of optimal selections is enhanced and stability under different variances is maximized. These are two major 
objectives due to applying AUCB model.  
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