Does Gamasid mites (Acari, Mesostigmata) observed in oil palm and rubber plantations can be used as indicators of tropical secondary forest soil transformation?


  • Julien Kouadio N’DRI Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Raymond Yao KOFFI Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Basile Moustapha DIARRA Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08
  • Saint Cyrille Kouamé MANOU Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. Téléphone : +225 07 07 49 38 08



soil and environment quality , rubber and oil palm plantations, secondary forests conversion, community, mesostigmatid mites, Soil textures


The aim of the study was to assess modifications in the community of soil mesostigmatid mites’, as indicator of environment stability with land-use change across 2–4 texturally distinct soils in La Mé and Grand Lahou, Côte d’Ivoire. The fieldwork was carried out in humid period on two study sites: 1– rubber landscape (secondary forest, 7-, 12- and 25-year-old rubber plantations) and 2– oil palm landscape (secondary forest, 13-, 20- and 39-year-old oil palm plantations). Three sampling stands were established in each land-use type and age class, for a total of 24 sampling stands. On each sampling stands, soil cores for Gamasid mite’s extraction were taken at 10 cm soil depth through a 40–50 m transect. Our findings highlighted a drop of mesostigmatid mites’ density (–49% and –52%), species richness (–41% and –40%), and diversity (–35% and –49%), respectively after conversion of the secondary forests into rubber and oil palm plantations. The soil with clayey sandy and clayey textures favored the development of the mesostigmatid mites, particularly in the abundance and species richness of Uropodina. However, the soil with sandy clayey textures improved the abundance and species richness of Gamasina. The mesostigmatid mites’ community was degraded in sandy-textured soils. In light of the Maturity Index values, a better quality of soil and environment was detected in the secondary forests compared to plantations. The results also suggest that the mesostigmatid mites’ community influence the soil nutrients and probably plant productivity indirectly by influencing the populations of their prey. 


Download data is not yet available.


Adiko A.F.D. (2021). Libéralisation et pauvreté : le cas des producteurs d’hévéa en Côte d’Ivoire. Accessed 02 July 2022

Allen K., Corre M.D., Tjoa A. and Veldkamp E. (2015). Soil nitrogen cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. Plos One.

Allen K. (2015). Impacts of land-use conversion in Sumatra, Indonesia on soil nitrogen cycling, soil nutrient stocks and ecosystem dynamics. PhD Dissertation. Georg-August-University of Göttingen, Germany.

Arroyo J., Keith A.M., Schmidt O. and Bolger T. (2013). Mite abundance and richness in

an Irish survey of soil biodiversity with comments on some newly recorded species. Irish Naturalists' Journal, 33(1): 19–27

Beckendorff A. (2016). Transformation of tropical forests to oil palm plantations in Sumatra, Indonesia–What are the effects on soil microorganisms and microarthropods (Oribatid mite) abundance, diversity and community structure? Bachelor Thesis. Institute of Zoology and Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Germany.

Călugăr A. and Ivan O. (2013). Diversity and distribution of the edaphic mites (Acari: Gamasina, Oribatida) in some forest plantations from the central Moldavian plateau. Lucrări Ştiinţifice, Seria Agronomie, 56(2): 97–102

Călugăr A. (2018). Soil mesostigmatid mites as a potential tool for bioindication concerning ecological status of forest. Acarologia, 58: 18–24. doi 10.24349/acarologia/20184285

Chiti T., Grieco E., Perugini L., Rey A. and Valentini R. (2014). Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil, 375: 47–59. doi: 10.1007/s11104-013-1928-1

Coja T. and Bruckner A. (2006). The maturity index applied to soil gamasine mites from five natural forests in Australia. Appl. Soil Ecol., 34: 1–9. doi: 10.1016/j.apsoil.2006.01.003

Colwell R.K., Mao C.X. and Chang J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85: 2717–2727.

Commodafrica (2018). IRC 2018 : La production de caoutchouc en Côte d'Ivoire triplera d'ici 2023, à 2 Mt. Accessed 12 March 2020.

Conti F.D. (2015). Conservation agriculture and soil fauna: only benefits or also potential threats? A review. EC Agriculture, 2.5: 473–482.

Demessie A., Singh B.R. and Lal R. (2013). Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutr. Cycl. Agroecosyst., 95: 365–375. doi: 10.1007/s10705-013-9570-0

Dervash M.A., Bhat R.A., Mushtaq N. and Singh D.V. (2018). Dynamics and importance of soil mesofauna. International Journal of Advance Research in Science and Engineering, 7(4): 2010–2019.

Despréaux D. and Nicolas D. (2001). Les cultures pérennes sont-elles menacées ? Oléagineux Corps gras Lipides, 8(6): 562–564.

Dhooria M.S. (2016). Soil Mites. In: Dhooria M.S. (Ed.), Fundamentals of Applied Acarology. Singapore, Springer, pp 197–206. doi 10.1007/978-981-10-1594-6_10

Díaz-Aguilar I., Quideau S.A., Proctor H.C., Kishchuk B.E. and Spence J.R. (2013). Influence of stand composition on predatory mite (Mesostigmata) assemblages from the forest floor in western Canadian boreal mixed wood forests. Forest Ecology and Management, 309: 105–114.

Drescher J., Rembold K., Allen K., Beckschäfer P., Buchori D., Clough Y., Faust H., Fauzi A.M., Gunawan D., Hertel D., Irawan B., Jaya I.N.S., Klamer B., Kleinn C., Knohl A., Kotowska M.M., Krashevska V., Krishna V., Leuschner C., Lorenz W., Meijide A., Melati D., Nomura M., Pérez-Cruzado C., Qaim M., Siregar I.Z., Steinebach S., Tjoa A., Tscharntke T., Wick B., Wiegand K., Kreft H. and Scheu S. (2016). Ecological and socioeconomic functions across tropical land use systems after rainforest conversion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371.

Eißfeller V. (2013). Tree species as determinants of the structure of oribatid mite communities (Oribatida) and the incorporation of plant carbon and nitrogen into the soil animal food web. Thesis Dissertation. Göttingen Centre for Biodiversity and Ecology. Georg-August University School of Science, Göttingen, Germany. Biodiversity and Ecology Series B, Volume 10. doi:

Elmoghazy M.M.E. and Shawer S.S. (2013). Relationship between soil diversity and inhabitant mites (Acari). Acarines, 7: 41–45.

Ettian M.K., Soulemane O. and Tahou T.M. (2009). Influence du régime alimentaire sur l’intervalle de parturition des aulacodes en captivité dans la région de Grand-Lahou (Côte d’Ivoire, Afrique de l’Ouest). J. Anim. Plant Sci., 4: 311–319.

Fages C. (2019). Chronique des matières premières : La Côte d'ivoire veut tripler sa production d'huile de palme sans déforester. Accessed 12 March 2020

Fall T. (2001). Etude sur la collecte et l’analyse des données sur les produits forestiers non ligneux au Sénégal. Statistiques forestière et collection des données. Rapport technique : AFDCA/TN/19. Accessed 10 March 2020

FAO (2020). La FAO présente l’analyse la plus complète des ressources forestières sous une forme novatrice. Objectifs du développement durable (ODD), ONU info. Accessed 15 May 2022

Gamito S. (2010). Caution is needed when applying Margalef diversity index. Ecol. Indic., 10: 550–551.

Gulvik M.E. (2007). Mites (Acari) as indicators of soil biodiversity and land use monitoring. Pol. J. Ecol., 55: 415–440.

Hammer Ø., Harper D.A.T. and Ryan P.D. (2001). PAST: Paleontological statistics software package for education and data analysis, Palaeontologia Electronica.

Hemati Z., Selvalakshmi S., Xia S. and Yang X. (2020). Identification of indicators: monitoring the impacts of rubber plantations on soil quality in Xishuangbanna, Southwest China. Ecol. Indic.,

Heydari M., Eslaminejad P., Kakhki F.V., Mirabbalou M., Omidipour R., Zema D.A., Ma C. and LucasBorja M.E. (2020). Spatiotemporal heterogeneity differently drives the diversity of various trophic guilds of mesofauna in semiarid oak forests. Trees.

Honciuc V. and Manu M. (2010). Ecological study on the edaphic mites populations (Acari: Mesostigmata-Gamasina; Oribatida) in urban areas from Romania. Rom. J. Biol. – Zool., 55(1): 3–17.

Kamczyc J., Skorupski M., Dyderski M.K., Gazda A., Hachułka M., Horodecki P., Kałucka I., Malicki M., Pielech R., Smoczyk M., Wierzcholska S. and Jagodziński A.M. (2018). Response of soil mites (Acari, Mesostigmata) to longterm Norway spruce plantation along a mountain stream. Experimental and Applied Acarology, 76(2): 269–286.

Kamczyc J., Turczański K., Malica J., Urbanowski C.K., Kobusiewicz A. and Pers-Kamczyc E. (2020). Soil near mature oaks is refugium for soil mites (Acari, Mesostigmata) in managed forests. International Journal of Acarology.

Kamczyc J., Malica J., Urbanowski C.K., Adrian Kobusiewicz A., Skonieczna J. and Pers-Kamczyc E. (2021). The mite communities (Acari, Mesostigmata) in Scots pine (Pinus sylvestris L.) forest after thinning – preliminary studies. For. Lett., 114: 1–8.

Kerfahi D., Binu M., Tripathi B.M., Dong K., Go R. and Adams J.M. (2016). Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microb. Ecol., doi 10.1007/s00248-016-0790-0

Koffi (2019). Changement des communautés d’Oribates et des paramètres physico-chimiques du sol des agrosystèmes dérivés des sols forestiers : cas des plantations de palmier à huile (Elaeis guineensis Jacq.) et d’hévéa (Hevea brasiliensis Muell.) dans le sud de la Côte d’Ivoire. Mémoire de Master. Laboratoire d’Ecologie et de Développement Durable, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire.

Konan K.S., Kouassi K.L., Kouamé K.I., Kouassi A.M., Gnakri D. (2013). Hydrologie et hydrochimie des eaux dans la zone de construction du chenal du port de pêche de Grand-Lahou, Côte d’Ivoire. Int. J. Biol. Chem. Sci., 7(2): 819–831. doi:10.4314/ijbcs.v7i2.37

Krantz G.W. and Walter D.E. (2009). A Manual of Acarology (3rd ed.). Texas Tech., University Press, Lubbock, USA.

Krantz G.W. (1978). A manual of acarology, 2nd edn. Oregon State University Bookstores, Corvallis.

Krashevska V., Klarner B., Widyastuti R., Maraun M. and Scheu S. (2015). Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol. Fertil. Soils. doi: 10.1007/s00374-015-1021-4

Krashevska V., Klarner B., Widyastuti R., Maraun M. and Scheu S. (2016). Changes in structure and functioning of protist (Testate Amoebae) communities due to conversion of lowland rainforest into rubber and oil palm plantations. Plos One. doi: 10.1371/journal.pone.0160179

Krause A. (2020). Changes in trophic niches of Oribatid mites with transformation of tropical rainforest systems – From rainforest into rubber and oil palm plantations in Sumatra, Indonesia. Thesis Dissertation. Doctoral program Biodiversity and Ecology, Georg-August University School of Science, Göttingen, Germany.

Magurran A.E. (2004). Mesure de la diversité biologique. Editions Blackwell, Oxford, Angleterre, 256p

Manu M. and Ion S. (2014). Characterisic soil mite’s communities (Acari: Gamasina) for some natural forests from Bucegi Natural Park – Romania. Periodicum Biologorum, 116(3): 303–312.

Manu M. and Onete M. (2013). Structural characteristics of soil mite populations (Acari- mesostigmata) from the oak-hornbeam forests from Southern Romania. Muzeul Olteniei Craiova- Oltenia. Studii şi comunicări. Ştiinţele Naturii., 29(1): 298–304.

Manu M., Băncilă R.I. and Onete M. (2013). Soil mite communities (Acari: Gamasina) from different ecosystem types from Romania. Belg. J. Zool., 143(1): 30–41.

Manu M., Băncilă R.I., Bîrsan C.C., Mountford O. and Onete M. (2021). Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest,

Romania. Scientific Reports.

Margalef R. (1958). Information theory in ecology. General Systems, 3: 36–71.

Meehan M.L., Song Z. and Proctor H. (2018). Roles of environmental and spatial factors in structuring assemblages of forest-floor mesostigmata in the boreal region of Northern Alberta, Canada. International Journal of Acarology, 44(7): 300–309. doi: 10.1080/01647954.2018.1520297

Minor M.A. and Cianciolo J.M. (2007). Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl. Soil Ecol., 35: 140–153. doi:10.1016/j.apsoil.2006.05.004

N’Dri J.K., Seka F.A., Pokou P.K., N’Da R.A.G. and Lagerlöf J. (2017). Abundance and diversity of soil mite (Acari) communities after conversion of tropical secondary forest into rubber plantations in Grand-Lahou, Côte d’Ivoire. Ecological Research, 32: 909–919. doi 10.1007/s11284-017-1499-3

Napierała A. and Błoszyk J. (2013). Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata). Exp. Appl. Acarol., 60: 163–180.

Ndiaye O. and Fainke S. (2020). Carte d’identité : In Société Africaine de Plantations d’Hévéas / West Africa Rating Agency, 12p.

Nguyen T.T., Do T.T., Harper R., Pham T.T., Linh T.V.K., Le T.S., Thanh L.B. and Giap N.X. (2020). Soil health impacts of rubber farming: the implication of conversion of degraded natural forests into monoculture plantations. Agriculture. doi:10.3390/agriculture10080357

Nurulita Y., Adetutu E.M., Kadali K.K., Shahsavari E., Zul D., Taha1 M. and Ball A.S. (2016). Assessment of the influence of oil palm and rubber plantations in tropical peat swamp soils using microbial diversity and activity analysis. J. Agric. Chem. Environ., 5: 53–65.

Pator R.C. and Ray D.C. (2021). Seasonality of litter dwelling microarthropods and

their relation with the climatic variables in Acacia Plantation of Cachar District, Assam. Eco. Env. Cons., 27(1): 80–84.

Péné C.B. and Assa D.A. (2003). Variations interannuelles de la pluviométrie et de l’alimentation hydrique de la canne à sucre en Côte-d’Ivoire. Sécheresse, 14: 43–52.

Perraud A. (1971). Les sols. In : Avenard J.M., Eldln M., Girard G., Sircoulon J., Touchebeuf P., Guillaumet J.L., Adjanohoun E. and Perraud A. (eds) Le milieu naturel de la Côte d’Ivoire, vol 50. Office de la Recherche Scientifique et Technique Outre-Mer, Paris, pp 265–391.

R Development Core team (2008). R: A language and environment for statistical computing. R Foundation for Statistical. Computing, Vienna, Austria. URL

Ruf A. (1998). A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil Ecol., 9: 447–452. doi:10.1016/ S0929-1393(98)00103-6

Sakhidad S., Kumar N.G. and Chimmalagi S.S. (2016). Distribution of soil Acari in Leucaena leucocephala and Vitis vinifera ecosystems. J. Soil Biol. Ecol., 36(1): 76–84.

Singh A.K., Liu W., Zakari S., Wu J., Yang B., Jiang X.J., Zhu X., Zou X., Zhang W., Chen C., Singh R. and Nath A.J. (2021). A global review of rubber plantations: impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Science of the Total Environment.

Skubala P. and Maslak M. (2009). Succession of Oribatid fauna (Acari, Oribatida) in fallen spruce trees: deadwood promotes species and functional diversity. In: Sabelis M.W. and Bruin J. (eds.) Trends in Acarology, pp123–128.

Swarnalatha B (2010). Effects of monoculture tree plantations and agricultural land-uses on the spatio-temporal variations of beneficial soil and litter arthropod diversity on the coromandel coast at Puducherry (India). Thesis Dissertation. Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, India

Urbanowski C.K., Horodecki P., Jacek Kamczyc J., Skorupski M. and Jagodzińsk A.M. (2018). Succession of mite assemblages (Acari, Mesostigmata) during decomposition of tree leaves in forest stands growing on reclaimed post-mining spoil heap and adjacent forest habitats. Forests. doi:10.3390/f9110718

Vrignon-Brenas S., Gay F., Ricard S., Snoeck D., Perron T., Mareschal L., Laclau J-P., Gohet E. and Malagoli P. (2019). Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development.

Walter D.E. and Proctor H.C. (2013). Mites in Soil and Litter Systems. In: Walter D.E. and Proctor H.C. (Ed) Mites: Ecology, Evolution and Behaviour: Life at a Microscale. Dordrecht, Springer, pp 161–228. doi 10.1007/978-94-007-7164-2_6

Yeboua K. and Ballo K. (2000). Caractéristiques chimiques du sol sous palmeraie. John Libbey Eurotext, 9: 73–76.

Zagatto M.R.G., Oliveira Filho L.C.I., Pompeo P.N., Niva C.C., Baretta D. and Bran Nogueira Cardoso E.J. (2020). Mesofauna and Macrofauna in Soil and Litter of Mixed Plantations. In: Bran Nogueira Cardoso E.J. et al. (eds.) Mixed Plantations of Eucalyptus and Leguminous Trees. Switzerland, Springer Nature, pp 155–172.




How to Cite

N’DRI, J. K. ., KOFFI, R. Y. ., DIARRA, . B. M. ., & MANOU, S. C. K. . (2022). Does Gamasid mites (Acari, Mesostigmata) observed in oil palm and rubber plantations can be used as indicators of tropical secondary forest soil transformation?. JOURNAL OF ADVANCES IN BIOLOGY, 15, 20–39.