A comparison and phylogenetic analysis of the pyrenoid ultrastructure of three Oocystis species (Oocystaceae, Trebouxiophyceae, Chlorophyta)

  • Feng Li Fisheries College of Guangdong Ocean University, Zhanjiang 524088, P. R. China
  • Xianghu Huang Fisheries College of Guangdong Ocean University, Zhanjiang 524088, P. R. China
  • Changling Li Fisheries College of Guangdong Ocean University, Zhanjiang 524088, P. R. China
Keywords: Oocystis, Oocystis nephrocytioides, Oocystaceae, 18S rRNA, phylogeny, ultrastructure, pyrenoids, TEM, taxonomy


The 18S rRNA gene sequences of three Oocystis species were determined and subjected to two different phylogenetic analysis algorithms. Phylogenetic analysis indicated that they all belong to Oocystaceae. However, the three strains were not members of a monophyletic cluster. New evidence that the genus Oocystis is paraphyletic is provided in this work. The pyrenoid ultrastructure of the three strains was studied using transmission electron microscopy (TEM). Different morphologies of pyrenoids can be distinguished as three types. Oocystis sp. had one pyrenoid surrounded by a sheath of starch consisting of four to six starch plates. The pyrenoid matrix was traversed by several tubular thylakoids. O. nephrocytioides contained two pyrenoids, with each pyrenoid being homogenous and surrounded by a thick, ring-like starch sheath. The thylakoids extend the length of the chloroplast but never traverse the pyrenoid matrix. No starch sheath pyrenoid has been found in Oocystis sp. FACHB 1429, which was traversed by two tubular thylakoids. These results suggest that different morphological features of the pyrenoids, including their associated starch sheath, are speciesspecific.


Download data is not yet available.


[1] C. Hoek.1995. Algae: an introduction to phycology. [2] A. Braun. 1855. Algarum unicellularium genera nova et minus cognita: praemissis observationibus de algis unicellularibus in genere. [3] N. Wille. 1879. Ferskvandsalger fra Novaja Semlja samle de af Dr. Kjellman paa Nordenskiölds expedition 1875. [4] W. West. 1893. Notes on Scotch fresh-water algae. Jour. of Bot. vol. 31, 97-104, [5] R. Chodat. 1897. Algues pélagiques nouvelles. Bull. Herb. Boissier. vol. 5, 119-120, [6] J. W. Snow. 1903. The plankton algae of Lake Erie, with special reference to the Chlorophyceae, US Government Printing Office. [7] B. Fott and I. Čado. 1966. Oocystis nephrocytioides sp. Nov. Phycologia. vol. 6, 47-50. [8] R. D. Groover and H. C. Bold. 1968. Phycological Notes I. Oocystis polymorpha sp. Nov. The Southwestern Naturalist. vol., 129-135. [9] R. Smith and H. Bold. 1966. Phycological studies VI, Investigations of the algal genera Eremosphaera and Oocystis. The University of Texas Publication. vol. 6612, 1-121. [10] H. Řeháková and B. Fott. 1969. Die Variabilität der Arten der Gattung Oocystis A. Braun. Studies in phycology. vol.,145-198. [11] D. M. John, B. A. Whitton and A. J. Brook. 2002. The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. [12] M. Stoyneva, C. Cocquyt, G. Gärtner and W. Vyverman. 2007. Oocystis lacustris Chod (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa). Linzer Biologischen Beiträge. vol. 39, 571-632. [13] T. Berner. 1993. Ultrastructure of microalgae. [14] T. Friedl. 1989. Comparative ultrastructure of pyrenoids inTrebouxia (Microthamniales, Chlorophyta). Plant systematics and evolution. vol. 164, 145-159. [15] T. Ikeda and H. Takeda. 1995. Species – specific differences of pyrenoids in Chlorella (Chlorophyta). Journal of Phycology. vol. 31, 813-818. [16] F. Hindák. 1988. Studies on the Chlorococcal Algae (Chlorophyceae). IV. [17] T. Friedl and C. O'Kelly. 2002. Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. European Journal of Phycology. vol. 37, 373-384. [18] F. Leliaert, D. R. Smith, H. Moreau, M. D. Herron, H. Verbruggen, C. F. Delwiche and O. De Clerck. 2012. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences. vol. 31, 1-46. [19] D. Hepperle, E. Hegewald and L. Krienitz. 2000. Phylogenetic position of the Oocystaceae (Chlorophyta). Journal of Phycology. vol. 36, 590-595. [20] M. Pažoutová, P. Škaloud and K. Nemjová. 2010. Phylogenetic position of Ooplanctella planoconvexa, gen. et comb. nova and Echinocoleum elegans (Oocystaceae, Trebouxiophyceae, Chlorophyta). Fottea. vol. 10, 75-82. [21] L. Krienitz and C. Bock. 2011. Elongatocystis ecballocystiformis gen. et comb. nov., and some reflections on systematics of Oocystaceae (Trebouxiophyceae, Chlorophyta). Fottea. vol. 11, 271-278. [22] S. Xia, H. Zhu, Y. Y. Cheng, G. X. Liu and Z. Y. Hu. 2013. Phylogenetic position of Ecballocystis and Ecballocystopsis (Chlorophyta). Fottea. [23] E. Schnepf, W. Koch and G. Deichgräber. 1966. Zur Cytologie und taxonomischen Einordnung von Glaucocystis. Archiv für Mikrobiologie. vol. 55, 149-174. [24] D. G. Robinson and R. White. 1972. The fine structure of Oocystis apiculata W. West with particular reference to the wall. British Phycological Journal. vol. 7, 109-118. [25] M. P. Stoyneva, E. Ingolic, G. Gaertner and W. Vyverman. 2009. The pyrenoid ultrastructure in Oocystis lacustris CHODAT (Chlorophyta, Trebouxiophyceae). Fottea. vol. 9, 149-154. [26] R. Stanier, R. Kunisawa, M. Mandel and G. Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological reviews. vol. 35, 171. [27] H. C. Bold. 1949. The morphology of Chlamydomonas chlamydogama, sp. Nov. Bulletin of the Torrey Botanical Club. vol. 101-108. [28] A. R. Spurr. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of ultrastructure research. vol. 26, 31-43. [29] E. S. Reynolds. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of cell biology. vol. 17, 208-212. [30] K. A. Phillips and M. W. Fawley. 2000. Diversity of coccoid algae in shallow lakes during winter. Phycologia. vol. 39, 498-506. [31] S. R. Swindell and T. N. Plasterer. 1997. SeqMan, vol. of Sequence data analysis guidebook. [32] S. Guindon and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology. vol. 52, 696-704. [33] J. P. Huelsenbeck and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. vol. 17, 754-755. [34] D. Posada and T. R. Buckley. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic biology. vol. 53, 793-808. [35] H. Sluiman and G. Lokhorst. 1988. The ultrastructure of cellular division (autosporogenesis) in the coccoid green alga, Trebouxia aggregata, revealed by rapid freeze fixation and freeze substitution. Protoplasma. vol. 144, 149-159. [36] H. Sachs, I. Grimm and D. Robinson. 1976. Structure, synthesis and orientation of microfibrils. I. Architecture and development of the wall of Oocystis solitaria. Cytobiologie. [37] H. Quader, D. Robinson and R. Van Kempen. 1983. Cell wall development in Oocystis solitaria in the presence of polysaccharide binding dyes. Planta. vol. 157, 317-323. [38] H. Quader. 1986. Cellulose microfibril orientation in Oocystis solitaria: proof that microtubules control the alignment of the terminal complexes. Journal of cell science. vol. 83, 223-234. [39] T. Fujino and T. Itoh. 1994. Architecture of the cell wall of a green alga, Oocystis apiculata. Protoplasma. vol. 180, 3948. [40] L. Krienitz, I. Ustinova, T. Friedl and V. A. Huss. 2001. Traditional generic concepts versus 18S rRNA gene phylogeny in the green algal family Selenastraceae (Chlorophyceae, Chlorophyta). Journal of Phycology. vol. 37, 852-865.