An EEG-based Sleep Staging method with hybrid entropy computation measures

Authors

  • Yiqian Yang Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, China
  • Shuchen Fu Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, China
  • Ruixiang Liao Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, China

DOI:

https://doi.org/10.24297/ijct.v24i.9637

Keywords:

Sleep staging, EEG, entropy, feature selection, classification

Abstract

Sleep is an indispensable physiological need of the human body. Sleep staging is an effective method to objectively assess sleep quality and is helpful for research on sleep and sleep-related diseases. Electroencephalogram (EEG) signals are nonlinear and non-stationary time series, and entropy features are particularly sensitive to these nonlinear characteristics and can reveal information that is difficult to discover with traditional linear analysis methods. We proposed an automatic sleep staging method based on EEG entropy computation, inlcuding signal preprocessing, entropy feature extraction, feature selection and lassification modules. The experimental results show that the average accruacy is 91.3% through the fused entropy features.

Downloads

Download data is not yet available.

References

Aboalayon, K. A. I., Faezipour, M., Almuhammadi, W. S., & Moslehpour, S. (2016). Sleep stage classification

using EEG signal analysis: a comprehensive survey and new investigation. Entropy, 18(9), 272. https://doi.org/10.3390/e18090272

Brunner, C., Delorme, A., & Makeig, S. (2013). Eeglab–an open source matlab toolbox for electrophysiological

research. Biomedical Engineering/Biomedizinische Technik, 58(SI-1-Track-G), 000010151520134182. https://doi.org/10.1515/bmt-2013-4182

Huang, H., Zhang, J., Zhu, L., Tang, J., Lin, G., Kong, W., & Zhu, L. (2021). EEG-based sleep staging

analysis with functional connectivity. Sensors, 21(6), 1988. https://doi.org/10.3390/s21061988

Imtiaz, S. A. (2021). A systematic review of sensing technologies for wearable sleep staging. Sensors, 21(5), 1562. https://doi.org/10.3390/s21051562

Korkalainen, H., Aakko, J., Duce, B., Kainulainen, S., Leino, A., Nikkonen, S., & Leppänen, T. (2020). Deep

learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Sleep, 43(11), zsaa098. https://doi.org/10.1093/sleep/zsaa098

Li, H., Peng, C., & Ye, D. (2015). A study of sleep staging based on a sample entropy analysis of

electroencephalogram. Bio-medical Materials and Engineering, 26(s1), S1149-S1156. https://doi.org/10.3233/BME-151411

Liang, Z., Wang, Y., Sun, X., Li, D., Voss, L. J., Sleigh, J. W., & Li, X. (2015). EEG entropy measures in

anesthesia. Frontiers in Computational Neuroscience, 9, 16. https://doi.org/10.3389/fncom.2015.00016

Loh, H. W., Ooi, C. P., Vicnesh, J., Oh, S. L., Faust, O., Gertych, A., & Acharya, U. R. (2020). Automated

detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020). Applied Sciences, 10(24), 8963. https://doi.org/10.3390/app10248963

Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG multiscale entropy and

power‐law frequency scaling during the human sleep cycle. Human Brain Mapping, 40(2), 538-551. https://doi.org/ 10.1002/hbm.24393

Qu, W., Wang, Z., Hong, H., Chi, Z., Feng, D. D., Grunstein, R., & Gordon, C. (2020). A residual based

attention model for EEG based sleep staging. IEEE Journal of Biomedical and Health Informatics, 24(10), 2833-2843. Rodríguez-Sotelo, J. L., Osorio-Forero, A., Jiménez-Rodríguez, A., Cuesta-Frau, D., Cirugeda-Roldán, E., &

Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised

pattern analysis techniques. Entropy, 16(12), 6573-6589. Sha’Abani, M. N. A. H., Fuad, N., Jamal, N., & Ismail, M. F. (2020). kNN and SVM classification for EEG: a

review. In InECCE2019: Proceedings of the 5th International Conference on Electrical, Control & Computer

Engineering, Kuantan, Pahang, Malaysia, 29th July 2019 (pp. 555-565). Springer Singapore. Tzimourta, K. D., Tsilimbaris, A., Tzioukalia, K., Tzallas, A. T., Tsipouras, M. G., Astrakas, L. G., &

Giannakeas, N. (2018). EEG-based automatic sleep stage classification. Biomed J, 1(6). Vallat, R., & Walker, M. P. (2021). An open-source, high-performance tool for automated sleep staging. Elife, 10, e70092. Zangeneh Soroush, M., Tahvilian, P., Nasirpour, M. H., Maghooli, K., Sadeghniiat-Haghighi, K., Vahid Harandi, S., & Jafarnia Dabanloo, N. (2022). EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms. Frontiers in Physiology, 13, 910368. Author Biography

Downloads

Published

2024-06-17

How to Cite

Yang, Y., Fu, S., & Liao, R. . (2024). An EEG-based Sleep Staging method with hybrid entropy computation measures. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 24, 62–70. https://doi.org/10.24297/ijct.v24i.9637

Issue

Section

Research Articles