An EEG-based Sleep Staging method with hybrid entropy computation measures
DOI:
https://doi.org/10.24297/ijct.v24i.9637Keywords:
Sleep staging, EEG, entropy, feature selection, classificationAbstract
Sleep is an indispensable physiological need of the human body. Sleep staging is an effective method to objectively assess sleep quality and is helpful for research on sleep and sleep-related diseases. Electroencephalogram (EEG) signals are nonlinear and non-stationary time series, and entropy features are particularly sensitive to these nonlinear characteristics and can reveal information that is difficult to discover with traditional linear analysis methods. We proposed an automatic sleep staging method based on EEG entropy computation, inlcuding signal preprocessing, entropy feature extraction, feature selection and lassification modules. The experimental results show that the average accruacy is 91.3% through the fused entropy features.
Downloads
References
Aboalayon, K. A. I., Faezipour, M., Almuhammadi, W. S., & Moslehpour, S. (2016). Sleep stage classification
using EEG signal analysis: a comprehensive survey and new investigation. Entropy, 18(9), 272. https://doi.org/10.3390/e18090272
Brunner, C., Delorme, A., & Makeig, S. (2013). Eeglab–an open source matlab toolbox for electrophysiological
research. Biomedical Engineering/Biomedizinische Technik, 58(SI-1-Track-G), 000010151520134182. https://doi.org/10.1515/bmt-2013-4182
Huang, H., Zhang, J., Zhu, L., Tang, J., Lin, G., Kong, W., & Zhu, L. (2021). EEG-based sleep staging
analysis with functional connectivity. Sensors, 21(6), 1988. https://doi.org/10.3390/s21061988
Imtiaz, S. A. (2021). A systematic review of sensing technologies for wearable sleep staging. Sensors, 21(5), 1562. https://doi.org/10.3390/s21051562
Korkalainen, H., Aakko, J., Duce, B., Kainulainen, S., Leino, A., Nikkonen, S., & Leppänen, T. (2020). Deep
learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Sleep, 43(11), zsaa098. https://doi.org/10.1093/sleep/zsaa098
Li, H., Peng, C., & Ye, D. (2015). A study of sleep staging based on a sample entropy analysis of
electroencephalogram. Bio-medical Materials and Engineering, 26(s1), S1149-S1156. https://doi.org/10.3233/BME-151411
Liang, Z., Wang, Y., Sun, X., Li, D., Voss, L. J., Sleigh, J. W., & Li, X. (2015). EEG entropy measures in
anesthesia. Frontiers in Computational Neuroscience, 9, 16. https://doi.org/10.3389/fncom.2015.00016
Loh, H. W., Ooi, C. P., Vicnesh, J., Oh, S. L., Faust, O., Gertych, A., & Acharya, U. R. (2020). Automated
detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020). Applied Sciences, 10(24), 8963. https://doi.org/10.3390/app10248963
Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG multiscale entropy and
power‐law frequency scaling during the human sleep cycle. Human Brain Mapping, 40(2), 538-551. https://doi.org/ 10.1002/hbm.24393
Qu, W., Wang, Z., Hong, H., Chi, Z., Feng, D. D., Grunstein, R., & Gordon, C. (2020). A residual based
attention model for EEG based sleep staging. IEEE Journal of Biomedical and Health Informatics, 24(10), 2833-2843. Rodríguez-Sotelo, J. L., Osorio-Forero, A., Jiménez-Rodríguez, A., Cuesta-Frau, D., Cirugeda-Roldán, E., &
Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised
pattern analysis techniques. Entropy, 16(12), 6573-6589. Sha’Abani, M. N. A. H., Fuad, N., Jamal, N., & Ismail, M. F. (2020). kNN and SVM classification for EEG: a
review. In InECCE2019: Proceedings of the 5th International Conference on Electrical, Control & Computer
Engineering, Kuantan, Pahang, Malaysia, 29th July 2019 (pp. 555-565). Springer Singapore. Tzimourta, K. D., Tsilimbaris, A., Tzioukalia, K., Tzallas, A. T., Tsipouras, M. G., Astrakas, L. G., &
Giannakeas, N. (2018). EEG-based automatic sleep stage classification. Biomed J, 1(6). Vallat, R., & Walker, M. P. (2021). An open-source, high-performance tool for automated sleep staging. Elife, 10, e70092. Zangeneh Soroush, M., Tahvilian, P., Nasirpour, M. H., Maghooli, K., Sadeghniiat-Haghighi, K., Vahid Harandi, S., & Jafarnia Dabanloo, N. (2022). EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms. Frontiers in Physiology, 13, 910368. Author Biography
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yiqian Yang, Shuchen Fu, Ruixiang Liao
This work is licensed under a Creative Commons Attribution 4.0 International License.