An Unprecedented View of Quantum Computers

Authors

DOI:

https://doi.org/10.24297/ijct.v23i.9371

Keywords:

Quantum Circuits, Reversibility, Qubits follow waves backwards, waves originate at detectors

Abstract

Every discussion of quantum computing starts with wave-particle duality, to explain how qubits differ from bits. But what if wave-particle duality were wrong? How would we explain quantum computing then? A little-known science called the Theory of Elementary Waves (TEW) says that quantum particles follow zero-energy waves backwards. Wave-particle duality cannot be true if waves and particles travel in opposite directions. This article proposes the first-ever TEW theory of quantum circuits. Elementary waves emanate from measuring devices and travel backwards through the circuits, whereas qubits move forwards through the wires and gates following those waves backwards. Quantum computers are known to be reversible. After we present that way-of-thinking, we will explain some of the evidence that TEW is valid. There is a mountain of empirical evidence from outside information technology. TEW is a maverick theory, out-of-step with the consensus about how quantum computers work. At first TEW sounds counterintuitive. Its advantage is Occam’s Razor: we present a simpler explanation of quantum circuits. We will present the quantum computer equivalent of saying that before the box is open Schrödinger’s cat is already dead or alive, but not both. Observing the cat simply tells us what was already true before we looked.

Downloads

Download data is not yet available.

References

A. J. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken experiment: A new violation of Bell's inequalities," Physical Review Letters, 49, 91-94 (1982). DOI: 10.1103/PhysRevLett.49.91

A. J. Aspect, A., J. Dalibard, G. Roger, "Experimental test of Bell's inequalities using time-varying analyzers," Physical Review Letters, 49, 1804-1807 (1982). DOI: 10.1103/PhysRevLett.49.1804.

J. Baggott, The Quantum Story, Oxford University Press, (2011). ISBN:978–0-19-956684-6

A. Becker, What Is Real? Basic Books, (2018). ISBN:978–0-19-956684-6

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195-200 (1964). DOI: 10.1103/PhysicsPhysiqueFizika.1.195

J. S. Bell, "The paradox of Einstein, Podolsky and Rosen: action at a distance in quantum mechanics?," Speculations in Science and Technology, 10, 269–285 (1987).

H. A. Bhat, F. A. Khanday, B. K. Kaushik, F. Bashir, and K. A. Shah, “Quantum computing: fundamentals, implementation, and applications,” IEEE Open Journal of Nanotechnology, 3, 61-77, 2022. doi: 10.1109/OJNANO.2022.3178545

H. A. Bhat, Khanday, F.A., Kaushik, B.K. et al. “Design and analysis of 3 × 3 reversible quantum gates,” J Comput Electron (2022). https://doi.org/10.1007/s10825-022-01980-z

H. A. Bhat, G, Faroz, A. Malik, F. A. Khanday, "Design and modelling of silicon quantum dot based single qubit spin quantum gates", International Journal of Theoretical Physics, 61, no.11, 2022. DOI: 10.1007/s1077-022-05239-y

J. H. Boyd, “A unifying theory for quantum physics, part 1,” Journal of Advances in Mathematics, 21, 139-175, (2022). DOI: 10.24297/jam.v21i.9284

J. H. Boyd, “A unifying theory for quantum physics, part 2,” Journal of Advances in Physics, 20, 215-291, (2022). DOI: 10.24297/jap.v20i.9268)

J. H. Boyd, “The Periodic Table needs negative orbitals in order to eliminate quantum weirdness,” Journal of Advances in Chemistry, 17, 88-125, (2020). DOI: 10.24297/jac.v17i.8865

D. Castelvecchi, “China launches second space lab,” Nature (2016). DOI: 10.1038/nature.2016.20611

CIRQ, “framework for programming quantum computers,” https://quantumai.google/cirq

J. F. Clauser, M.A. Horne, A. Shimony and R. A. Holt (CHSH), "Proposed experiment to test local hidden-variable theories," Physical Review Letters 23, 880-884 (1969). DOI: 10.1103/PhysRevLett.23.880

R. Clothier, H. Kaiser, S. A. Werner, H. Rauch, and H. Wölwitsch, “Neutron echo phase,” Physical Review A, 44, 5357-5368, (1991). DOI: 10.1103/PhysRevA.44.5357

C.J. Davisson and L.H. Germer, “Scattering of electrons by a single crystal of nickel,” Nature 119, 558–560 (1927). DOI: 10.1038/119558a0

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Physical Review, 47, 777-780 (1935). DOI: 10.1103/PhysRev.47.777

A. Flarend and B. Hilborn, Quantum Computing, Oxford U. Press (2022), ISBN 978-0-19-285797-2.

M. Giustina, M.A.M. Versteegh, S. Wengerowsky, et. al., “Significant loophole free test of Bell’s Theorem with entangled photons,” Physical Review Letters, 115, 250401 (2015) 10.1103/PhysRevLett.115.250401

H. H. Hess, “History of Ocean Basins” in (ed) Geological Society, Petrological Studies, University of California (1962) pp. 599-620.

J. D. Hidary, Quantum Computing: An Applied Approach, second edition, Springer (2021), ISBN: 978-3-030-83274-2 (eBook)

H. M. Hill, “Physics Nobel honours quantum entanglement experiments,” Physics Today, 75, 14-17 (Dec 22, 2022). DOI: 10.1063/PT.3.5133

H. Kaiser, S. A. Werner, H. Rauch, et.al., Coherence and spectral-filtering in neutron-interferometry. Physical Review A, 45, 31-42, (1992). DOI: 10.1103/PhysRevA.45.31

T. S. Kuhn, The Structure of Scientific Revolutions, Chicago: U. of Chicago Press, (1970). ISBN 978-0-226-45803-8.

L. E. Little, Theory of Elementary Waves, Physics Essays 9 (1), 100-134 (1996). DOI: 10.4006/1.3029212

L. E. Little, “Dr Lewis E Little, Theory of Elementary Waves @ JPL, Feb 2000,” https://www.youtube.com/watch?v=3_9LB0RzgWg&t=5s

L. E. Little, Theory of Elementary Waves, New York: New Classics Library (2009). ISBN: 978-0-932750-84-6.

A. Marchenko, “Best programming language for quantum computing”, @AnastasiaMarchenkoQuantum https://www.youtube.com/watch?v=j9doC_msZe4

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge U. Press, c2000, ISBN 978-1-107-00217-3.

quTools, “quED: a science kit for quantum physics,” https://qutools.com/qued/

Qiskit, “Open-source quantum development,” https://qiskit.org/

D. Selwood, “Richard Feynman and quantum computing,” Electrical Engineering Journal, (2018), https://www.eejournal.com/article/richard-feynman-and-quantum-computing/

H. Thapliyal and E. Munoz-Coreas, "Design of quantum computing circuits", IT Professional, 21, 22-26, 2019. DOI: 10.1109/MITP.2019.2943134

USGS Publications Warehouse, “Harry Hammond Hess, Spreading the seafloor”, (1962). https://pubs.usgs.gov/publications/text/HHH.html

USGS Publications Warehouse, “Magnetic stripes and isotope clocks”, (1963). https://pubs.usgs.gov/gip/dynamic/stripes.html

Walliman, “Map of quantum computing,” (Domain of Science) https://dominicwalliman.com/post/670182536587231232/this-is-the-map-of-quantum-computing-a-really

D. Walliman, “Quantum Computing” (Domain of Science), https://www.youtube.com/watch?v=VyX8E4KUkWw

D. Walliman, “Who has the best quantum computer?” (Domain of Science), https://www.youtube.com/watch?v=gcbMKt079l8&t=22s

A. Zeilinger, Curriculum Vitae, https://www.oeaw.ac.at/fileadmin/Institute/IQOQI-Vienna/IMG/team/zeilinger-group/CV_Anton_Zeilinger.pdf

Downloads

Published

2023-03-06

How to Cite

Boyd, A. J. H. (2023). An Unprecedented View of Quantum Computers. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 23, 7–40. https://doi.org/10.24297/ijct.v23i.9371

Issue

Section

Research Articles