Diabetic Exudate Detection in Color Retinal Images

  • Dalia Ali zagazig universty
Keywords: Exudates, Diabetes, Machine Learning, Image Processing Techniques, Retinal Images

Abstract

Diabetic retinopathy is a vascular complication of long-term diabetes. It causes damage to the small blood vessels positioned in the retina. These damaged blood vessels affect the macula and lead to vision loss. Exudates are one of the early signs of diabetic retinopathy disease in the retinal image, which occurs due to built-up of lipidic accumulation within the retina. In this paper, an image processing method is presented for diabetic exudates detection. First, high performance pre-processing is applied not only for de-noising and normalization but also to remove artefacts and reflection that could mislead exudates detection. Then, morphological operations are applied for the final candidate segmentation. Eight region features are extracted from the exudate region then random forest classifier is applied to differentiate between exudates and non-exudates region. The proposed method is evaluated using e_ophtha_EX dataset, achieving 80% sensitivity and 77% positive predicted value.

References

Eshaq, R. S., Aldalati, A. M., Alexander, J. S., & Harris, N. R. (2017). Diabetic retinopathy: breaking the barrier. Pathophysiology, 24(4), 229-241.

Williams, R., Airey, M., Baxter, H., Forrester, J. K. M., Kennedy-Martin, T., & Girach, A. (2004). Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye, 18(10), 963.

Alghadyan, A. A. (2011). Diabetic retinopathy–An update. Saudi Journal of Ophthalmology, 25(2), 99-111.

Walter, T., Klein, J. C., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE transactions on medical imaging, 21(10), 1236-1243.

Sopharak, A., Uyyanonvara, B., Barman, S., & Williamson, T. H. (2008). Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Computerized medical imaging and graphics, 32(8), 720-727.

Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., Laÿ, B., Danno, R., ... & Chabouis, A. (2014). Exudate detection in color retinal images for mass screening of diabetic retinopathy. Medical image analysis, 18(7), 1026-1043.

Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin Jr, K. W., & Chaum, E. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical image analysis, 16(1), 216-226.

Sánchez, C. I., Niemeijer, M., Išgum, I., Dumitrescu, A., Suttorp-Schulten, M. S., Abràmoff, M. D., & van Ginneken, B. (2012). Contextual computer-aided detection: Improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Medical image analysis, 16(1), 50-62.

Kar, S. S., & Maity, S. P. (2017). Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Transactions on Biomedical Engineering, 65(3), 608-618.

Marin, D., Gegundez-Arias, M. E., Ponte, B., Alvarez, F., Garrido, J., Ortega, C., ... & Bravo, J. M. (2018). An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification. Medical & biological engineering & computing, 56(8), 1379-1390.

Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J. C., Meyer, F., ... & Elie, D. (2013). TeleOphta: Machine learning and image processing methods for teleophthalmology. Irbm, 34(2), 196-203. Available from: http:/ /www.adcis.net/en/Download-Third-Party/E-Ophtha.html.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Published
2019-08-10
How to Cite
Ali, D. (2019). Diabetic Exudate Detection in Color Retinal Images. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 19, 7510-7518. https://doi.org/10.24297/ijct.v19i0.8377
Issue
Section
Articles